Fault-tolerant quantum computation with long-range correlated noise

被引:172
作者
Aharonov, D [1 ]
Kitaev, A
Preskill, J
机构
[1] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, Jerusalem, Israel
[2] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[3] Microsoft Corp, Res, Redmond, WA 98052 USA
基金
美国国家科学基金会;
关键词
Acoustic noise - Algebra - Fault tolerant computer systems - Markov processes - Perturbation techniques - Reliability - Theorem proving;
D O I
10.1103/PhysRevLett.96.050504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a new version of the quantum accuracy threshold theorem that applies to non-Markovian noise with algebraically decaying spatial correlations. We consider noise in a quantum computer arising from a perturbation that acts collectively on pairs of qubits and on the environment, and we show that an arbitrarily long quantum computation can be executed with high reliability in D spatial dimensions, if the perturbation is sufficiently weak and decays with the distance r between the qubits faster than 1/r(D).
引用
收藏
页数:4
相关论文
共 9 条
  • [1] AHARONOV D, QUANTPH9906129
  • [2] Aharonov D., 1997, P 29 ANN ACM S THEOR, P176, DOI DOI 10.1145/258533.258579
  • [3] ALIFERIS P, QUANTPH0504218
  • [4] Quantum computations: algorithms and error correction
    Kitaev, AY
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) : 1191 - 1249
  • [5] Quantum computing with realistically noisy devices
    Knill, E
    [J]. NATURE, 2005, 434 (7029) : 39 - 44
  • [6] Resilient quantum computation: error models and thresholds
    Knill, E
    Laflamme, R
    Zurek, WH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969): : 365 - 384
  • [7] REICHARDT BW, QUANTPH0509203, P20403
  • [8] Fault-tolerant quantum computation
    Shor, PW
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 56 - 65
  • [9] Fault-tolerant quantum computation for local non-Markovian noise
    Terhal, BM
    Burkard, G
    [J]. PHYSICAL REVIEW A, 2005, 71 (01):