Isolation and characterization of a C-repeat binding transcription factor from maize

被引:11
作者
Wang, Lei [1 ]
Luo, Yanzhong [1 ]
Zhang, Lan [1 ]
Zhao, Jun [1 ]
Hu, Zhiqiu [1 ]
Fan, Yunliu [1 ]
Zhang, Chunyi [1 ]
机构
[1] Chinese Acad Agr Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Biotechnol Res Inst, Beijing 100081, Peoples R China
关键词
C-repeat; DNA-binding; transcription factor; Zea mays; ZmCBF3;
D O I
10.1111/j.1744-7909.2008.00683.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
C-repeat binding proteins (CBFs) are a group of transcription factors that have been proven to be important for stress tolerance in plants. Many of these transcription factors transactivate the promoters of cold-regulated genes via binding to low temperature- or dehydration-responsive cis-elements, thus conferring plants cold acclimation. In the present study, we isolated a C-repeat binding transcription factor from maize using the yeast one-hybrid system with the C-repeat motif from the promoter of the Arabidopsis COR15a gene as bait. The isolated transcription factor is highly similar to the Arabidopsis CBF3 in their predicted amino acid sequences, and is therefore designated ZmCBF3. Point mutation analyses of the ZmCBF3-binding cis-element revealed (A/G)(C/T)CGAC as the core binding sequence. Expression analyses showed that ZmCBF3 was upregulated by both abscisic acid and low temperature, and was actively expressed during embryogenesis, suggesting that ZmCBF3 plays a role in stress response in maize.
引用
收藏
页码:965 / 974
页数:10
相关论文
共 27 条
[1]   A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA [J].
Allen, MD ;
Yamasaki, K ;
Ohme-Takagi, M ;
Tateno, M ;
Suzuki, M .
EMBO JOURNAL, 1998, 17 (18) :5484-5496
[2]   Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J].
Buttner, M ;
Singh, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5961-5966
[3]   Barley Cbf3 gene identification, expression pattern, and map location [J].
Choi, DW ;
Rodriguez, EM ;
Close, TJ .
PLANT PHYSIOLOGY, 2002, 129 (04) :1781-1787
[4]   OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression [J].
Dubouzet, JG ;
Sakuma, Y ;
Ito, Y ;
Kasuga, M ;
Dubouzet, EG ;
Miura, S ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT JOURNAL, 2003, 33 (04) :751-763
[5]   Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock [J].
Fowler, SG ;
Cook, D ;
Thomashow, ME .
PLANT PHYSIOLOGY, 2005, 137 (03) :961-968
[6]   Regulation and characterization of four CBF transcription factors from Brassica napus [J].
Gao, MJ ;
Allard, G ;
Byass, L ;
Flanagan, AM ;
Singh, J .
PLANT MOLECULAR BIOLOGY, 2002, 49 (05) :459-471
[7]  
Gietz RD, 1995, METHOD MOL CELL BIOL, V5, P255
[8]   Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs [J].
Hao, DY ;
Yamasaki, K ;
Sarai, A ;
Ohme-Takagi, M .
BIOCHEMISTRY, 2002, 41 (13) :4202-4208
[9]  
Jaglo KR, 2001, PLANT PHYSIOL, V127, P910, DOI 10.1104/pp.010548
[10]   Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance [J].
Jaglo-Ottosen, KR ;
Gilmour, SJ ;
Zarka, DG ;
Schabenberger, O ;
Thomashow, MF .
SCIENCE, 1998, 280 (5360) :104-106