Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia

被引:115
作者
Lu, AG
Ran, RQ
Parmentier-Batteur, S
Nee, A
Sharp, FR
机构
[1] Univ Cincinnati, Dept Neurol, Cincinnati, OH 45267 USA
[2] Univ Cincinnati, Neurosci Program, Cincinnati, OH 45267 USA
关键词
cerebral ischemia; heat shock elements; heat shock factors; heat shock proteins; stroke;
D O I
10.1046/j.1471-4159.2002.00835.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Geldanamycin (GA), a benzoquinone ansamycin, binds Hsp90 in vitro, releases heat shock factor (HSF1) and induces heat shock proteins (Hsps). Because viral and transgenic overexpression of Hsps protects cells against ischemia in vitro, we hypothesized that GA would protect brain from focal ischemia by inducing Hsps in vivo, Adult male Sprague-Dawley rats were subjected to 2-hour middle cerebral artery occlusions (MCAO) using the suture technique followed by 22-h reperfusions. GA or vehicle was injected into the lateral cerebral ventricles (i.c.v) 24 h before ischemia. Geldanamycin at 1 mug/kg decreased infarct volumes by 55.7% (p < 0.01) and TUNEL-positive cells by 30% in cerebral cortex. GA also improved behavioral outcomes (p < 0.01) and reduced brain edema (p < 0.05). Western blots showed that the 1 mug/kg GA dose induced Hsp70 and Hsp25 protein 8.2-fold and 2.7-fold, respectively, by 48 h following administration. Immunocytochemistry showed that GA induced Hsp70 in neurons and Hsp25 in glia and arteries in cortex, hippocampus, hypothalamus, and other brain regions. GA reduced co-immunoprecipitation of HSF1 with Hsp90 in brain tissue homogenates, promoted HSE-binding of HSF in brain nuclear extracts using gel shift assays, and increased luciferase reporter gene transcription for the Hsp70 promoter in PC12 cells. The data show that geldanamycin protects brain from focal ischemia and that this may be due, at least in part, to geldanamycin stimulation of heat shock gene transcription.
引用
收藏
页码:355 / 364
页数:10
相关论文
共 46 条
[1]   HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes [J].
Ali, A ;
Bharadwaj, S ;
O'Carroll, R ;
Ovsenek, N .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (09) :4949-4960
[2]   DIFFERENTIAL-EFFECTS OF ENTEROSTATIN, GALANIN AND OPIOIDS ON HIGH-FAT DIET CONSUMPTION [J].
BARTON, C ;
LIN, L ;
YORK, DA ;
BRAY, GA .
BRAIN RESEARCH, 1995, 702 (1-2) :55-60
[3]   Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J].
Beere, HM ;
Wolf, BB ;
Cain, K ;
Mosser, DD ;
Mahboubi, A ;
Kuwana, T ;
Tailor, P ;
Morimoto, RI ;
Cohen, GM ;
Green, DR .
NATURE CELL BIOLOGY, 2000, 2 (08) :469-475
[4]   Stress management - heat shock protein-70 and the regulation of apoptosis [J].
Beere, HM ;
Green, DR .
TRENDS IN CELL BIOLOGY, 2001, 11 (01) :6-10
[5]   The stress response [J].
Brown, IR .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1995, 21 (06) :473-475
[6]   Hsp27 negatively regulates cell death by interacting with cytochrome c [J].
Bruey, JM ;
Ducasse, C ;
Bonniaud, P ;
Ravagnan, L ;
Susin, SA ;
Diaz-Latoud, C ;
Gurbuxani, S ;
Arrigo, AP ;
Kroemer, G ;
Solary, E ;
Garrido, C .
NATURE CELL BIOLOGY, 2000, 2 (09) :645-652
[7]   EFFECT OF MILD HYPERTHERMIA ON THE ISCHEMIC INFARCT VOLUME AFTER MIDDLE CEREBRAL-ARTERY OCCLUSION IN THE RAT [J].
CHEN, H ;
CHOPP, M ;
WELCH, KMA .
NEUROLOGY, 1991, 41 (07) :1133-1135
[8]   TRANSIENT HYPERTHERMIA PROTECTS AGAINST SUBSEQUENT FOREBRAIN ISCHEMIC CELL-DAMAGE IN THE RAT [J].
CHOPP, M ;
CHEN, H ;
HO, KL ;
DERESKI, MO ;
BROWN, E ;
HETZEL, FW ;
WELCH, KMA .
NEUROLOGY, 1989, 39 (10) :1396-1398
[9]   Induction of heat shock proteins by tyrosine kinase inhibitors in rat cardiomyocytes and myogenic cells confers protection against simulated ischemia [J].
Conde, AG ;
Lan, SS ;
Dillmann, WH ;
Mestril, R .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (07) :1927-1938
[10]   Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27 [J].
Currie, RW ;
Ellison, JA ;
White, RF ;
Feuerstein, GZ ;
Wang, XK ;
Barone, FC .
BRAIN RESEARCH, 2000, 863 (1-2) :169-181