Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries

被引:90
作者
Chen, Zhongxue [1 ]
Qiu, Shen
Cao, Yuliang [1 ]
Ai, Xinping
Xie, Kai
Hong, Xiaobin
Yang, Hanxi
机构
[1] Wuhan Univ, Hubei Key Lab Electrochem Power Sources, Coll Chem & Mol Sci, Wuhan 430072, Peoples R China
基金
美国国家科学基金会;
关键词
ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; CATHODE MATERIALS; PERFORMANCE; ENERGY; LIMN1.5NI0.5O4; LIMN2O4; BEHAVIOR; OXIDES;
D O I
10.1039/c2jm33338d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spinel LiNi0.5Mn1.5O4 has attracted extensive interest as an appealing cathode material of next generation lithium-ion batteries to meet the cost/performance requirements for electric vehicle applications and renewable electric energy storage. In this paper, we report, for the first time, a nanoflake-stacked LiNi0.5Mn1.5O4 spinel with oriented growth of the (001) planes synthesized via an in situ template route. The resultant LiNi0.5Mn1.5O4 cathode delivers an initial discharge capacity of 133.5 mA h g(-1) at 1 C with capacity retention of 86% after 500 cycles. X-ray diffraction and transmission electron microscopy results suggest that the growth of (111) facets on the surfaces of the nanoflake-stacked LiNi0.5Mn1.5O4 spinel is significantly restricted, which helps to inhibit the dissolution of manganese from the lattice and ensure an excellent cycling stability. Moreover, the very thin nanoflakes and large interspaces between the nanoflakes are favorable for Li ion transportation, leading to a fast kinetics of the LiNi0.5Mn1.5O4 spinel. As a result, the material demonstrates a reversible capacity of 96 mA h g(-1) even at 50 C rate, showing a feasible application for high-power lithium ion batteries. In particular, this study provides a synthetic strategy to fabricate insertion materials with a surface-oriented morphology and nanoflake-stacked structure for energy storage, fast-ion conductors and other applications.
引用
收藏
页码:17768 / 17772
页数:5
相关论文
共 38 条
[1]   Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J].
Amatucci, G ;
Tarascon, JM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (12) :K31-K46
[2]   Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinet via polymer-assisted synthesis:: A method for improving its rate capability and performance in 5 V lithium batteries [J].
Arrebola, Jose C. ;
Caballero, Alvaro ;
Cruz, Manuel ;
Hernan, Lourdes ;
Morales, Julian ;
Castellon, Enrique Rodriguez .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (14) :1904-1912
[3]   Comparison of the Performance of LiNi1/2Mn3/2O4 with Different Microstructures [J].
Cabana, Jordi ;
Zheng, Honghe ;
Shukla, Alpesh K. ;
Kim, Chunjoong ;
Battaglia, Vincent S. ;
Kunduraci, Muharrem .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) :A997-A1004
[4]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714
[5]   Multi-electron reaction materials for high energy density batteries [J].
Gao, Xue-Ping ;
Yang, Han-Xi .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (02) :174-189
[6]   Nanostructured materials for electrochemical energy conversion and storage devices [J].
Guo, Yu-Guo ;
Hu, Jin-Song ;
Wan, Li-Jun .
ADVANCED MATERIALS, 2008, 20 (15) :2878-2887
[7]   An Advanced Lithium Ion Battery Based on High Performance Electrode Materials [J].
Hassoun, Jusef ;
Lee, Ki-Soo ;
Sun, Yang-Kook ;
Scrosati, Bruno .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (09) :3139-3143
[8]   Dynamic Structural Changes at LiMn2O4/Electrolyte Interface during Lithium Battery Reaction [J].
Hirayama, Masaaki ;
Ido, Hedekazu ;
Kim, KyungSu ;
Cho, Woosuk ;
Tamura, Kazuhisa ;
Mizuki, Jun'ichiro ;
Kanno, Ryoji .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (43) :15268-15276
[9]   Crystallographic facetting in solid-state reacted LiMn2O4 spinel powder [J].
Huang, MR ;
Lin, CW ;
Lu, HY .
APPLIED SURFACE SCIENCE, 2001, 177 (1-2) :103-113
[10]   Nanoparticle-Nanorod Core-Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries [J].
Jo, Minki ;
Lee, Young-Ki ;
Kim, Kwang Man ;
Cho, Jaephil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) :A841-A845