Promoter analysis of co-regulated genes in the yeast genome

被引:46
作者
Zhang, MQ [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
来源
COMPUTERS & CHEMISTRY | 1999年 / 23卷 / 3-4期
关键词
yeast cell cycle; genome array expression; profile clustering; promoter motif;
D O I
10.1016/S0097-8485(99)00020-0
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The use of high density DNA arrays to monitor gene expression at a genome-wide scale constitutes a fundamental advance in biology. In particular, the expression pattern of all genes in Saccharomyces cerevisiae can be interrogated using microarray analysis where cDNAs are hybridized to an array of more than 6000 genes in the yeast genome. In an effort to build a comprehensive Yeast Promoter Database and to develop new computational methods for mapping upstream regulatory elements, we started recently in an on going collaboration with experimental biologists on analysis of large-scale expression data. It is well known that complex gene expression patterns result from dynamic interacting networks of genes in the genetic regulatory circuitry. Hierarchical and modular organization of regulatory DNA sequence elements are important information for our understanding of combinatorial control of gene expression. As a bioinformatics attempt in this new direction, we have done some computational exploration of various initial experimental data. We will use cell-cycle regulated gene expression as a specific example to demonstrate how one may extract promoter information computationally from such genome-wide screening. Full report of the experiments and of the complete analysis will be published elsewhere when all the experiments are to be finished later in this year (Spellman, P.T., et al. 1998. Mol. Biol. Cell 9, 3273-3297). (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:233 / 250
页数:18
相关论文
共 60 条
[1]   Swi5 controls a novel wave of cyclin synthesis in late mitosis [J].
Aerne, BL ;
Johnson, AL ;
Toyn, JH ;
Johnston, LH .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (04) :945-956
[2]  
ALTHOEFER H, 1995, MOL CELL BIOL, V15, P5917
[3]   MECHANISMS THAT HELP THE YEAST-CELL CYCLE CLOCK TICK - G2 CYCLINS TRANSCRIPTIONALLY ACTIVATE G2 CYCLINS AND REPRESS G1 CYCLINS [J].
AMON, A ;
TYERS, M ;
FUTCHER, B ;
NASMYTH, K .
CELL, 1993, 74 (06) :993-1007
[4]   MUTATIONAL ANALYSIS OF A DNA-SEQUENCE INVOLVED IN LINKING GENE-EXPRESSION TO THE CELL-CYCLE [J].
ANDREWS, BJ ;
MOORE, L .
BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE, 1992, 70 (10-11) :1073-1080
[5]   THE YEAST SW14 PROTEIN CONTAINS A MOTIF PRESENT IN DEVELOPMENTAL REGULATORS AND IS PART OF A COMPLEX INVOLVED IN CELL-CYCLE-DEPENDENT TRANSCRIPTION [J].
ANDREWS, BJ ;
HERSKOWITZ, I .
NATURE, 1989, 342 (6251) :830-833
[6]   GENE-EXPRESSION AND THE CELL-CYCLE - A FAMILY AFFAIR [J].
ANDREWS, BJ ;
MASON, SW .
SCIENCE, 1993, 261 (5128) :1543-1544
[7]   MAT-ALPHA-1 PROTEIN, A YEAST TRANSCRIPTION ACTIVATOR, BINDS SYNERGISTICALLY WITH A 2ND PROTEIN TO A SET OF CELL-TYPE-SPECIFIC GENES [J].
BENDER, A ;
SPRAGUE, GF .
CELL, 1987, 50 (05) :681-691
[8]   Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins [J].
Bohm, S ;
Frishman, D ;
Mewes, HW .
NUCLEIC ACIDS RESEARCH, 1997, 25 (12) :2464-2469
[9]   CELL CYCLE-REGULATED PROMOTERS IN BUDDING YEAST [J].
BREEDEN, L .
TRENDS IN GENETICS, 1988, 4 (09) :249-253
[10]   CELL-CYCLE CONTROL OF THE YEAST HO GENE - CIS-ACTING AND TRANS-ACTING REGULATORS [J].
BREEDEN, L ;
NASMYTH, K .
CELL, 1987, 48 (03) :389-397