Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging

被引:425
作者
Mulder, WJM
Strijkers, GJ
van Tilborg, GAF
Griffioen, AW
Nicolay, K
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, Biomed NMR, NL-5600 MB Eindhoven, Netherlands
[2] Maastricht Univ, Dept Pathol, Res Inst Growth & Dev, Angiogenesis Lab, NL-6202 AZ Maastricht, Netherlands
[3] Univ Hosp, NL-6202 AZ Maastricht, Netherlands
关键词
lipid-based nanoparticles; contrast-enhanced magnetic resonance imaging; molecular imaging; micelles; liposomes; microemulsions;
D O I
10.1002/nbm.1011
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In the field of MR imaging and especially in the emerging field of cellular and molecular MR imaging, flexible strategies to synthesize contrast agents that can be manipulated in terms of size and composition and that can be easily conjugated with targeting ligands are required. Furthermore, the relaxivity of the contrast agents, especially for molecular imaging applications, should be very high to deal with the low sensitivity of MRI. Lipid-based nanoparticles, such as liposomes or micelles, have been used extensively in recent decades as drug carrier vehicles. A relatively new and promising application of lipidic nanciparticles is their use as multimodal MR contrast agents. Lipids are amphiphilic molecules with both a hydrophobic and a hydrophilic part, which spontaneously assemble into aggregates in an aqueous environment. In these aggregates, the amphiphiles are arranged such that the hydrophobic parts cluster together and the hydrophilic parts face the water. In the low concentration regime, a wide variety of structures can be formed, ranging from spherical micelles to disks or liposomes. Furthermore, a monolayer of lipids can serve as a shell to enclose a hydrophobic core. Hydrophobic iron oxide particles, quantum dots or perfluorocarbon emulsions can be solubilized using this approach. MR-detectable and fluorescent amphiphilic molecules can easily be incorporated in lipidic nanoparticles. Furthermore, targeting ligands can be conjugated to lipidic particles by incorporating lipids with a functional moiety to allow a specific interaction with molecular markers and to achieve accumulation of the particles at disease sites. In this review, an overview of different lipidic nanoparticles for use in MRI is given, with the main emphasis on Gd-based contrast agents. The mechanisms of particle formation, conjugation strategies and applications in the field of contrast-enhanced, cellular and molecular MRI are discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:142 / 164
页数:23
相关论文
共 184 条
[11]  
AMIRBEKIAN V, 2005, P 13 ISMRM SCI M 200
[12]  
Artemov D, 2003, CANCER RES, V63, P2723
[13]   Principles of magnetodynamic chemotherapy [J].
Babincová, M ;
Leszczynska, D ;
Sourivong, P ;
Babinec, P ;
Leszczynski, J .
MEDICAL HYPOTHESES, 2004, 62 (03) :375-377
[14]  
Babincová M, 2000, Z NATURFORSCH C, V55, P278
[15]  
Bagwe RP, 2001, CRIT REV THER DRUG, V18, P77
[16]   DIFFUSION OF UNIVALENT IONS ACROSS LAMELLAE OF SWOLLEN PHOSPHOLIPIDS [J].
BANGHAM, AD ;
STANDISH, MM ;
WATKINS, JC .
JOURNAL OF MOLECULAR BIOLOGY, 1965, 13 (01) :238-+
[17]   Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging [J].
Barkhausen, J ;
Ebert, W ;
Heyer, C ;
Debatin, JF ;
Weinmann, HJ .
CIRCULATION, 2003, 108 (05) :605-609
[18]   Critical update and emerging trends in epidermal growth factor receptor targeting in cancer [J].
Baselga, J ;
Arteaga, CL .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (11) :2445-2459
[19]   Assessment of nerve degeneration by gadofluorine M-enhanced magnetic resonance imaging [J].
Bendszus, M ;
Wessig, C ;
Schütz, A ;
Horn, T ;
Kleinschnitz, C ;
Sommer, C ;
Misselwitz, B ;
Stoll, G .
ANNALS OF NEUROLOGY, 2005, 57 (03) :388-395
[20]   Persistent contrast enhancement by sterically stabilized paramagnetic liposomes in murine melanoma [J].
Bertini, I ;
Bianchini, F ;
Calorini, L ;
Colagrande, S ;
Fragai, M ;
Franchi, A ;
Gallo, O ;
Gavazzi, C ;
Luchinat, C .
MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (03) :669-672