Convergence of inexact Newton-like iterations in incremental finite element analysis of elasto-plastic problems

被引:7
作者
Blaheta, R
Axelsson, O
机构
[1] CATHOLIC UNIV NIJMEGEN,DEPT MATH,NL-6525 ED NIJMEGEN,NETHERLANDS
[2] ACAD SCI CZECH REPUBL,INST GEON,OSTRAVA 70800,CZECH REPUBLIC
关键词
D O I
10.1016/S0045-7825(96)01119-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Convergence of two inexact Newton-like methods suitable for application in incremental finite element analysis of problems of elasto-plasticity is investigated by a new technique based on a certain approximation condition. It is shown that the convergence can be controlled by the size of load increments. A numerical example illustrates the developed theoretical results.
引用
收藏
页码:281 / 295
页数:15
相关论文
共 12 条
[1]  
AXELSSON O, 1995, FAST SOLVERS FLOW PR, V49, P38
[2]  
AXELSSON O, UNPUB NLAA PLASTICIT
[3]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[4]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[5]   SOLUTION OF LARGE NONLINEAR-SYSTEMS IN ELASTOPLASTIC INCREMENTAL-ANALYSIS [J].
BLAHETA, R ;
KOHUT, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 63 (1-3) :255-264
[6]  
BLAHETA R, UNPUB CONVERGENCE NE
[7]   Displacement Decomposition-Incomplete Factorization Preconditioning Techniques for Linear Elasticity Problems [J].
Blaheta, Radim .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 1994, 1 (02) :107-128
[8]  
Hackbusch W, 1994, ITERATIVE SOLUTION L
[9]  
KORNEEV VG, 1984, TEUBNERE TEXTE MAT B, V69
[10]  
Marcal P.V., 1967, INT J MECH SCI, V9, P143, DOI DOI 10.1016/0020-7403(67)90004-5