Emission of polycyclic aromatic hydrocarbons from gasohol and ethanol vehicles

被引:52
作者
de Abrantes, Rui [1 ]
de Assuncao, Joao Vicente [2 ]
Pesquero, Celia Regina [2 ]
Bruns, Roy Edward [3 ]
Nobrega, Raimundo Paiva [2 ]
机构
[1] Cetesb, Vehicular Emiss Lab, Sao Paulo, Brazil
[2] Univ Sao Paulo, Sch Publ Hlth, BR-05508 Sao Paulo, Brazil
[3] Univ Estadual Campinas, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Vehicular emission; PAH; Air pollution; Toxic pollutants; Gasohol; Ethanol;
D O I
10.1016/j.atmosenv.2008.10.014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20-25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A - Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application. Results showed that the total PAH emission factor varied from 41.9 mu g km(-1) to 612 mu g km(-1) in the gasohol vehicle, and from 11.7 mu g km(-1) to 27.4 mu g km(-1) in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 mu g TEQ km(-1) to 4.61 mu g TEQ km(-1) for the gasohol vehicle and from 0.0117 mu g TEQ km(-1) to 0.0218 mu g TEQ km(-1) in the ethanol vehicle. For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:648 / 654
页数:7
相关论文
共 17 条
[1]  
*AG TOX SUBST DIS, POL AR HYDR
[2]  
[Anonymous], 2004, STATISTICA DATA ANAL
[3]  
*ASS BRAS NORM TEC, 2005, 6601 NBR ASS BRAS NO
[4]  
*ASS NAC FABR VEIC, 2006, AN EST IND AUT BRAS
[5]  
BOX GEP, 2005, STAT EXPT, pCH6
[6]  
Bruns R. E., 2006, STAT DESIGN CHEMOMET
[7]   PAH CHARACTERISTICS IN THE AMBIENT AIR OF TRAFFIC-SOURCE [J].
LEE, WJ ;
WANG, YF ;
LIN, TC ;
CHEN, YY ;
LIN, WC ;
KU, CC ;
CHENG, JT .
SCIENCE OF THE TOTAL ENVIRONMENT, 1995, 159 (2-3) :185-200
[8]   Effect of fuel aromatic content on PAH emission from a heavy-duty diesel engine [J].
Mi, HH ;
Lee, WJ ;
Chen, CB ;
Yang, HH ;
Wu, SJ .
CHEMOSPHERE, 2000, 41 (11) :1783-1790
[9]  
RIPPLE DE, 2006, J SYNTHETIC LUBRICAT, V6, P209
[10]   SOURCES OF FINE ORGANIC AEROSOL .2. NONCATALYST AND CATALYST-EQUIPPED AUTOMOBILES AND HEAVY-DUTY DIESEL TRUCKS [J].
ROGGE, WF ;
HILDEMANN, LM ;
MAZUREK, MA ;
CASS, GR ;
SIMONEIT, BRT .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1993, 27 (04) :636-651