Evaluation of surface water fluxes of the pan-Arctic land region with a land surface model and ERA-40 reanalysis

被引:52
作者
Su, FG [1 ]
Adam, JC
Trenberth, KE
Lettenmaier, DP
机构
[1] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[2] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
D O I
10.1029/2005JD006387
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The seasonal, spatial, and latitudinal variability of precipitation (P), evapotranspiration (E), and runoff (R) are examined for large Arctic river basins and for the entire pan-Arctic domain using a 21-year off-line simulation of the Variable Infiltration Capacity (VIC) macroscale hydrology model and the ERA-40 reanalysis. Observed P used in the VIC model (corrected for gauge catch deficiency) is compared with that from the ERA-40 reanalysis. Gridded values of evapotranspiration minus precipitation (E-P) are calculated from the ERA-40 atmospheric water budget, and estimates of implied E are obtained as the residual of observed P and ERA-40 E-P. The ERA-40 P is surprisingly close to observations on an annual basis over the large river basins (especially accounting for known errors in the observations). Furthermore, ERA-40 P is quite consistent with observations in terms of interannual, spatial, and latitudinal variations. ERA-40 E is generally higher than both VIC E and implied E in spring and autumn. However, VIC estimates more E in June and July than either ERA-40 or the atmospheric budget for the Yenisei, Ob, and Mackenzie River basins. The ERA-40 bias toward early snowmelt and a double runoff peak (not present in VIC or observations) indicates the need for improvements in the ECMWF land surface scheme. The long-term means of ERA-40 vapor convergence P-E for the Lena, Yenisei, Ob, and Mackenzie are not in balance with observed runoff, mainly due to the uncertainties in computed P-E and observed streamflow.
引用
收藏
页数:16
相关论文
共 79 条
[1]   THE ROLE OF SEA ICE AND OTHER FRESH-WATER IN THE ARCTIC CIRCULATION [J].
AAGAARD, K ;
CARMACK, EC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1989, 94 (C10) :14485-14498
[2]   Application of a macroscale hydrologic model to estimate the water balance of the Arkansas Red River basin [J].
Abdulla, FA ;
Lettenmaier, DP ;
Wood, EF ;
Smith, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D3) :7449-7459
[3]   Correction of global precipitation products for orographic effects [J].
Adam, JC ;
Clark, EA ;
Lettenmaier, DP ;
Wood, EF .
JOURNAL OF CLIMATE, 2006, 19 (01) :15-38
[4]   Adjustment of global gridded precipitation for systematic bias [J].
Adam, JC ;
Lettenmaier, DP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D9)
[5]  
[Anonymous], 2000, 295 ECMWF
[6]   Effects of simulated climate change on the hydrology of major river basins [J].
Arora, VK ;
Boer, GJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D4) :3335-3348
[7]   Assessment of simulated water balance for continental-scale river basins in an AMIP 2 simulation [J].
Arora, VK .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D14) :14827-14842
[8]  
Barry RG, 2000, NATO SCI S PRT 2 ENV, V70, P45
[9]   Intercomparison of water and energy budgets for five Mississippi subbasins between ECMWF reanalysis (ERA-40) and NASA Data Assimilation Office fvGCM for 1990-1999 [J].
Betts, AK ;
Ball, JH ;
Bosilovich, M ;
Viterbo, P ;
Zhang, YC ;
Rossow, WB .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D16)
[10]  
Betts AK, 2003, J HYDROMETEOROL, V4, P1194, DOI 10.1175/1525-7541(2003)004<1194:EOTESW>2.0.CO