Fermionic solution of the Andrews-Baxter-Forrester model .2. Proof of Melzer's polynomial identities

被引:40
作者
Warnaar, SO
机构
[1] Mathematics Department, University of Melbourne, Parkville
关键词
ABF model; one-dimensional configuration sums; Fermi lattice gas; Melter's polynomial identities; Rogers-Ramanujan identities; Virasoro characters;
D O I
10.1007/BF02179577
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the one-dimensional configuration sums of the ABF model using the fermionic technique introduced in part I of this paper. Combined with the results of Andrews, Baxter, and Forrester, we prove polynomial identities for finitizations of the Virasoro characters chi(b,a)((r-1,r))(q) as conjectured by Melter. In the thermodynamic limit these identities reproduce Rogers-Ramanujan-type identities for the unitary minimal Virasoro characters conjectured by the Stony Brook group. We also present a list of additional Virasoro character identities which follow from our proof of Melter's identities and application of Bailey's lemma.
引用
收藏
页码:49 / 83
页数:35
相关论文
共 50 条
[1]  
Andrews G. E., 1976, The Theory of Partitions
[2]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[3]   PARTITIONS WITH PRESCRIBED HOOK DIFFERENCES [J].
ANDREWS, GE ;
BAXTER, RJ ;
BRESSOUD, DM ;
BURGE, WH ;
FORRESTER, PJ ;
VIENNOT, G .
EUROPEAN JOURNAL OF COMBINATORICS, 1987, 8 (04) :341-350
[4]   LATTICE GAS GENERALIZATION OF THE HARD HEXAGON MODEL .3. Q-TRINOMIAL COEFFICIENTS [J].
ANDREWS, GE ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) :297-330
[5]   MULTIPLE SERIES ROGERS-RAMANUJAN TYPE IDENTITIES [J].
ANDREWS, GE .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 114 (02) :267-283
[6]  
ANDREWS GE, 1974, P NATL ACAD SCI USA, V74, P4082
[7]  
Bailey WN, 1947, P LOND MATH SOC, V49, P421
[8]  
Bailey W N., 1948, Proc London Math Soc, V50, P1, DOI [DOI 10.1112/PLMS/S2-50.1.1, 10.1112/plms/s2-50.1.1]
[9]  
BAVER E, HEPTH9502118
[10]   ROGERS-RAMANUJAN IDENTITIES IN THE HARD HEXAGON MODEL [J].
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1981, 26 (03) :427-452