Confidence sets for partially identified parameters that satisfy a finite number of moment inequalities

被引:85
作者
Rosen, Adam M. [1 ]
机构
[1] UCL, Dept Econ, London WC1E 6BT, England
基金
英国经济与社会研究理事会;
关键词
Partial identification; Inference; Moment inequalities;
D O I
10.1016/j.jeconom.2008.08.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a computationally simple way to construct confidence sets for a parameter of interest in models comprised of moment inequalities. Building on results from the literature on multivariate one-sided tests, I show how to test the hypothesis that any particular parameter value is logically consistent with the maintained moment inequalities. The associated test statistic has an asymptotic chi-bar-square distribution, and can be inverted to construct an asymptotic confidence set for the parameter of interest, even if that parameter is only partially identified. Critical values for the test are easily computed, and a Monte Carlo study demonstrates implementation and finite sample performance. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 55 条
[1]   ESTIMATION OF THE PARAMETERS OF A SINGLE EQUATION IN A COMPLETE SYSTEM OF STOCHASTIC EQUATIONS [J].
ANDERSON, TW ;
RUBIN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (01) :46-63
[2]   THE ASYMPTOTIC PROPERTIES OF ESTIMATES OF THE PARAMETERS OF A SINGLE EQUATION IN A COMPLETE SYSTEM OF STOCHASTIC EQUATIONS [J].
ANDERSON, TW ;
RUBIN, H .
ANNALS OF MATHEMATICAL STATISTICS, 1950, 21 (04) :570-582
[3]  
Andrews D., 2004, CONFIDENCE REGIONS P
[4]   Estimation when a parameter is on a boundary [J].
Andrews, DWK .
ECONOMETRICA, 1999, 67 (06) :1341-1383
[5]  
ANDREWS DWK, 2005, LIMIT FINITE SAMPLE
[6]  
ANDREWS DWK, 2007, VALIDITY SUBSAMPLING
[7]  
ANDREWS DWK, 2007, INFERENCE PARAMETERS
[8]   Bounds on treatment effects from studies with imperfect compliance [J].
Balke, A ;
Pearl, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) :1171-1176
[9]  
BARTHOLOMEW DJ, 1959, BIOMETRIKA, V46, P36
[10]   A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES .2. [J].
BARTHOLOMEW, DJ .
BIOMETRIKA, 1959, 46 (3-4) :328-335