Spacer-elongated cell wall fusion proteins improve cell surface expression in the yeast Saccharomyces cerevisiae

被引:38
作者
Breinig, F [1 ]
Schmitt, MJ [1 ]
机构
[1] Univ Saarland, Angewandte Mol Biol, D-66041 Saarbrucken, Germany
关键词
D O I
10.1007/s00253-002-0939-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fusion proteins for cell surface expression in the yeast Saccharomyces cerevisiae were constructed that consisted of the N-terminal leader sequence of Kre1p, followed by the nine amino acid viral epitope hemagglutinin (HA), and the carboxyterminal anchoring domain of either Cwp2p or Flo1p. All fusions were constitutively expressed under transcriptional control of the phosphoglycerate kinase promoter and immunofluorescence analysis indicated that in each construct the HA peptide was correctly anchored to the outer yeast cell surface. Successful solubilization of the cell wall fusions by laminarinase treatment indicated that the fusions are covalently linked to cell wall beta-1,3-D-glucans in vivo. FACS analyses further demonstrated that 70% of the yeast cell population expressed the corresponding cell wall fusion. Neither the number of positive cells within the population nor the distribution of the fusion at the single-cell level were negatively affected by replacing the "heterologous" Kre1p leader by the "native" Cwp2p leader. Insertion of a 350 amino acid Ser/Thr-rich spacer sequence into the fusions led to a dramatic increase in HA peptide accessibility on the yeast cell surface. Our data show that FACS analyses represent a valuable means for investigating cell surface expression, and indicate that artificial-spacer-elongated cell wall fusions might raise novel possibilities for cell surface expression of heterologous proteins in yeast.
引用
收藏
页码:637 / 644
页数:8
相关论文
共 27 条
[1]   Localization and cell surface anchoring of the Saccharomyces cerevisiae flocculation protein Flo1p [J].
Bony, M ;
ThinesSempoux, D ;
Barre, P ;
Blondin, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (15) :4929-4936
[2]   YEAST KRE GENES PROVIDE EVIDENCE FOR A PATHWAY OF CELL-WALL BETA-GLUCAN ASSEMBLY [J].
BOONE, C ;
SOMMER, SS ;
HENSEL, A ;
BUSSEY, H .
JOURNAL OF CELL BIOLOGY, 1990, 110 (05) :1833-1843
[3]  
Caro LHP, 1997, YEAST, V13, P1477, DOI 10.1002/(SICI)1097-0061(199712)13:15<1477::AID-YEA184>3.0.CO
[4]  
2-L
[5]   MOLECULAR-BASIS OF CELL INTEGRITY AND MORPHOGENESIS IN SACCHAROMYCES-CEREVISIAE [J].
CID, VJ ;
DURAN, A ;
DELREY, F ;
SNYDER, MP ;
NOMBELA, C ;
SANCHEZ, M .
MICROBIOLOGICAL REVIEWS, 1995, 59 (03) :345-386
[6]   Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines [J].
Georgiou, G ;
Stathopoulos, C ;
Daugherty, PS ;
Nayak, AR ;
Iverson, BL ;
Curtiss, R .
NATURE BIOTECHNOLOGY, 1997, 15 (01) :29-34
[7]   ENGINEERING HYBRID GENES WITHOUT THE USE OF RESTRICTION ENZYMES - GENE-SPLICING BY OVERLAP EXTENSION [J].
HORTON, RM ;
HUNT, HD ;
HO, SN ;
PULLEN, JK ;
PEASE, LR .
GENE, 1989, 77 (01) :61-68
[8]  
ITO H, 1983, J BACTERIOL, V154, P161
[9]   WHY ARE PROTEINS O-GLYCOSYLATED [J].
JENTOFT, N .
TRENDS IN BIOCHEMICAL SCIENCES, 1990, 15 (08) :291-294
[10]   Retention of Saccharomyces cerevisiae cell wall proteins through a phosphodiester-linked beta-1,3-/beta-1,6-glucan heteropolymer [J].
Kapteyn, JC ;
Montijn, RC ;
Vink, E ;
delaCruz, J ;
Llobell, A ;
Douwes, JE ;
Shimoi, H ;
Lipke, PN ;
Klis, FM .
GLYCOBIOLOGY, 1996, 6 (03) :337-345