Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice

被引:168
作者
Glykys, J
Mody, I
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Interdept PhD Rpogram Neurosci, Los Angeles, CA USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurol, Los Angeles, CA USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA USA
关键词
D O I
10.1152/jn.01122.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functionally, gamma-aminobutyric acid receptor (GABAR)-mediated inhibition can be classified as phasic (synaptic) and tonic (extrasynaptic). The GABARs underlying tonic inhibition assemble from subunits different from those responsible for phasic inhibition. We wanted to assess the excitability of hippocampal pyramidal cell (PC) networks following a selective impairment of tonic inhibition. This is difficult to accomplish by pharmacological means. Because the GABAR alpha 5 subunits mostly mediate the tonic inhibition in CA1 and CA3 PCs, we quantified changes in tonic inhibition and examined network excitability in slices of adult gabra5(-/-) mice. In gabra5(-/-) CA1 and CA3 PCs tonic inhibitory currents were 60 and 53%, respectively, of those recorded in wild type (WT), with no alterations in phasic inhibition. The amount of tonic inhibition recorded in slices was significantly affected by the method of slice storage (interface or submerged chamber). Field recordings in gabra5(-/-) CA3 pyramidal layer showed an increased network excitability that was decreased by the GABAR agonist muscimol at a concentration that restored the tonic inhibition of gabra5(-/-) PCs to the WT level without altering phasic inhibition. Through a battery of pharmacological experiments, we have identified delta subunit-containing GABARs as the mediators of the residual tonic inhibition in gabra5(-/-) PCs. Our study is consistent with an important role of tonic inhibition in the control of hippocampal network excitability and highlights selective enhancers of tonic inhibition as promising therapeutic approaches for diseases involving network hyperexcitability.
引用
收藏
页码:2796 / 2807
页数:12
相关论文
共 54 条
[1]   Distinct functional and pharmacological properties of tonic and quantal inhibitory postsynaptic currents mediated by γ-aminobutyric acidA receptors in hippocampal neurons [J].
Bai, DL ;
Zhu, GY ;
Pennefather, P ;
Jackson, MF ;
Macdonald, JF ;
Orser, BA .
MOLECULAR PHARMACOLOGY, 2001, 59 (04) :814-824
[2]   Development of GABAA receptor-mediated inhibitory postsynaptic currents in hippocampus [J].
Banks, MI ;
Hardie, JB ;
Pearce, RA .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (06) :3097-3107
[3]  
Banks MI, 1998, J NEUROSCI, V18, P1305
[4]   Kinetic differences between synaptic and extrasynaptic GABAA receptors in CA1 pyramidal cells [J].
Banks, MI ;
Pearce, RA .
JOURNAL OF NEUROSCIENCE, 2000, 20 (03) :937-948
[5]   Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA(A) receptors [J].
Brickley, SG ;
CullCandy, SG ;
Farrant, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 497 (03) :753-759
[6]   Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance [J].
Brickley, SG ;
Revilla, V ;
Cull-Candy, SG ;
Wisden, W ;
Farrant, M .
NATURE, 2001, 409 (6816) :88-92
[7]   Pharmacological characterization of a novel cell line expressing human α4β3δ GABAA receptors [J].
Brown, N ;
Kerby, J ;
Bonnert, TP ;
Whiting, PJ ;
Wafford, KA .
BRITISH JOURNAL OF PHARMACOLOGY, 2002, 136 (07) :965-974
[8]   Intact sorting, targeting, and clustering of γ-aminobutyric acid A receptor subtypes in hippocampal neurons in vitro [J].
Brünig, I ;
Scotti, E ;
Sidler, C ;
Fritschy, JM .
JOURNAL OF COMPARATIVE NEUROLOGY, 2002, 443 (01) :43-55
[9]   Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing, γ-aminobutyric acid type A receptors [J].
Caraiscos, VB ;
Elliott, EM ;
You-Ten, KE ;
Cheng, VY ;
Belelli, D ;
Newell, JG ;
Jackson, MF ;
Lambert, JJ ;
Rosahl, TW ;
Wafford, KA ;
MacDonald, JF ;
Orser, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (10) :3662-3667
[10]   Integration of quanta in cerebellar granule cells during sensory processing [J].
Chadderton, P ;
Margrie, TW ;
Häusser, M .
NATURE, 2004, 428 (6985) :856-860