Fourier's law for a microscopic model of heat conduction

被引:92
作者
Bernardin, C
Olla, S
机构
[1] ENS, Dept Math, F-94230 Cachan, France
[2] Univ Paris 09, CNRS, CEREMADE, UMR 7534, F-75775 Paris, France
关键词
Fourier's law; heat conduction; entropy production; non-equilibrium stationary state;
D O I
10.1007/s10955-005-7578-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a chain of N harmonic oscillators perturbed by a conservative stochastic dynamics and coupled at the boundaries to two gaussian thermostats at different temperatures. The stochastic perturbation is given by a diffusion process that exchange momentum between nearest neighbor oscillators conserving the total kinetic energy. The resulting total dynamics is a degenerate hypoelliptic diffusion with a smooth stationary state. We prove that the stationary state, in the limit as N ->proportional to, satisfies Fourier's law and the linear profile for the energy average.
引用
收藏
页码:271 / 289
页数:19
相关论文
共 15 条
[1]  
BERNARDIN C, HEAT CONDUCTION MODE
[2]  
BOLSTERLI M, 1970, PHYS REV A, V4, P1086
[3]   Fourier's law for a harmonic crystal with self-consistent stochastic reservoirs [J].
Bonetto, F ;
Lebowitz, JL ;
Lukkarinen, J .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :783-813
[4]  
Bonetto F., 2000, MATH PHYS 2000, P128, DOI [DOI 10.1142/9781848160224_0008, 10.1142/9781848160224_0008.]
[5]   Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 201 (03) :657-697
[6]   HYDRODYNAMICS OF STATIONARY NONEQUILIBRIUM STATES FOR SOME STOCHASTIC LATTICE GAS MODELS [J].
EYINK, G ;
LEBOWITZ, JL ;
SPOHN, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :253-283
[7]  
FRITZ J, 2005, IN PRESS J STAT PHYS
[8]  
GIARDINA C, 2005, FOURIER LAW MOMENTUM
[9]  
Hormander L., 1985, ANAL LINEAR PARTIAL
[10]   HEAT-FLOW IN AN EXACTLY SOLVABLE MODEL [J].
KIPNIS, C ;
MARCHIORO, C ;
PRESUTTI, E .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :65-74