A new inexact alternating directions method for monotone variational inequalities

被引:382
作者
He, BS [1 ]
Liao, LZ
Han, DR
Yang, H
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Peoples R China
[3] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Civil Engn, Kowloon, Hong Kong, Peoples R China
关键词
variational inequality; alternating directions method; inexact method;
D O I
10.1007/s101070100280
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The alternating directions method (ADM) is an effective method for solving a class of variational inequalities (VI) when the proximal and penalty parameters in sub-VI problems are properly selected. In this paper, we propose a new ADM method which needs to solve two strongly monotone sub-VI problems in each iteration approximately and allows the parameters to vary from iteration to iteration. The convergence of the proposed ADM method is proved under quite mild assumptions and flexible parameter conditions.
引用
收藏
页码:103 / 118
页数:16
相关论文
共 28 条
[1]  
BERTSEKAS DP, 1982, MATH PROGRAM STUD, V17, P139
[2]  
BURACHIK RS, 1999, ROBUSTNESS EXTRAGRAD
[3]   A PROXIMAL-BASED DECOMPOSITION METHOD FOR CONVEX MINIMIZATION PROBLEMS [J].
CHEN, G ;
TEBOULLE, M .
MATHEMATICAL PROGRAMMING, 1994, 64 (01) :81-101
[4]   TRAFFIC EQUILIBRIUM AND VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
TRANSPORTATION SCIENCE, 1980, 14 (01) :42-54
[5]  
Drezner Z., 1995, Facility Location, A Survey of Applications and Methods
[6]  
Eaves B., 1971, Math. Program, V1, P68, DOI [10.1007/BF01584073, DOI 10.1007/BF01584073]
[7]   ON THE DOUGLAS-RACHFORD SPLITTING METHOD AND THE PROXIMAL POINT ALGORITHM FOR MAXIMAL MONOTONE-OPERATORS [J].
ECKSTEIN, J ;
BERTSEKAS, DP .
MATHEMATICAL PROGRAMMING, 1992, 55 (03) :293-318
[8]  
ECKSTEIN J, 1994, LARGE SCALE OPTIMIZATION: STATE OF THE ART, P115
[9]  
Eckstein J., 1994, OPTIM METHOD SOFTW, V4, P75, DOI [10.1080/10556789408805578, DOI 10.1080/10556789408805578]
[10]  
Fortin M., 1983, AUGMENTED LAGRANGIAN