Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome

被引:83
作者
Serino, G
Tsuge, T
Kwok, S
Matsui, M
Wei, N
Deng, XW
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Inst Phys & Chem Res, Frontier Res Program, Lab Photopercept & Signal Transduct, RIKEN, Wako, Saitama 35101, Japan
关键词
D O I
10.1105/tpc.11.10.1967
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pleiotropic constitutive photomorphogenic/deetiolated/fusca (cop/det/fus) mutants of Arabidopsis exhibit features of light-grown seedlings when grown in the dark. Cloning and biochemical analysis of COP9 have revealed that it is a component of a multiprotein complex, the COP9 signalosome (previously known as the COP9 complex). Here, we compare the immunoaffinity and the biochemical purification of the COP9 signalosome from cauliflower and confirm its eight-subunit composition. Molecular cloning of subunit 4 of the complex revealed that it is a proteasome-COP9 complex-elf3 domain protein encoded by a gene that maps to chromosome 5, near the chromosomal location of the cops and fus4 mutations. Genetic complementation tests showed that the cops and fus4 mutations define the same locus, now designated as COP8. Molecular analysis of the subunit I-encoding gene in both cops and fus4 mutants identified specific molecular lesions, and overexpression of the subunit 4 cDNA in a cops mutant background resulted in complete rescue of the mutant phenotype. Thus, we conclude that COP8 encodes subunit 4 of the COP9 signalosome. Examination of possible molecular interactions by using the yeast two-hybrid assay indicated that COP8 is capable of strong self-association as well as interaction with COP9, FUS6/COP11, FUSE, and Arabidopsis JAB1 homolog 1, the latter four proteins being previously defined subunits of the Arabidopsis COP9 signalosome. A comparative sequence analysis indicated that COP8 is highly conserved among multicellular eukaryotes and is also similar to a subunit of the 19S regulatory particle of the 26S proteasome.
引用
收藏
页码:1967 / 1979
页数:13
相关论文
共 36 条
[1]  
AUSUBEL F, 1995, SHORT PROTOCOLS MOL, V8, P919
[2]   ASSIGNMENT OF 30 MICROSATELLITE LOCI TO THE LINKAGE MAP OF ARABIDOPSIS [J].
BELL, CJ ;
ECKER, JR .
GENOMICS, 1994, 19 (01) :137-144
[3]   A YEAST MATING-SELECTION SCHEME FOR DETECTION OF PROTEIN-PROTEIN INTERACTIONS [J].
BENDIXEN, C ;
GANGLOFF, S ;
ROTHSTEIN, R .
NUCLEIC ACIDS RESEARCH, 1994, 22 (09) :1778-1779
[4]   A FUSCA GENE OF ARABIDOPSIS ENCODES A NOVEL PROTEIN ESSENTIAL FOR PLANT DEVELOPMENT [J].
CASTLE, LA ;
MEINKE, DW .
PLANT CELL, 1994, 6 (01) :25-41
[5]   The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch [J].
Chamovitz, DA ;
Wei, N ;
Osterlund, MT ;
vonArnim, AG ;
Staub, JM ;
Matsui, M ;
Deng, XW .
CELL, 1996, 86 (01) :115-121
[6]   ARABIDOPSIS THALIANA MUTANT THAT DEVELOPS AS A LIGHT-GROWN PLANT IN THE ABSENCE OF LIGHT [J].
CHORY, J ;
PETO, C ;
FEINBAUM, R ;
PRATT, L ;
AUSUBEL, F .
CELL, 1989, 58 (05) :991-999
[7]   A new group of conserved coactivators that increase the specificity of AP-1 transcription factors [J].
Claret, FX ;
Hibi, M ;
Dhut, S ;
Toda, T ;
Karin, M .
NATURE, 1996, 383 (6599) :453-457
[8]   COP1 - A REGULATORY LOCUS INVOLVED IN LIGHT-CONTROLLED DEVELOPMENT AND GENE-EXPRESSION IN ARABIDOPSIS [J].
DENG, XW ;
CASPAR, T ;
QUAIL, PH .
GENES & DEVELOPMENT, 1991, 5 (07) :1172-1182
[9]  
Dressel U, 1999, MOL CELL BIOL, V19, P3383
[10]   A SIMPLE AND RAPID METHOD FOR THE PREPARATION OF PLANT GENOMIC DNA FOR PCR ANALYSIS [J].
EDWARDS, K ;
JOHNSTONE, C ;
THOMPSON, C .
NUCLEIC ACIDS RESEARCH, 1991, 19 (06) :1349-1349