Numerical analysis of a model for phase separation of a multi-component alloy

被引:51
作者
Blowey, JF
Copetti, MIM
Elliott, CM
机构
[1] UNIV FED SANTA MARIA,DEPT MATH,BR-97119 SANTA MARIA,RS,BRAZIL
[2] UNIV SUSSEX,CTR MATH ANAL & APPLICAT,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
关键词
D O I
10.1093/imanum/16.1.111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fully discrete implicit finite-element approximation of a model for the phase separation of a multi-component alloy. We prove existence, uniqueness and stability of the numerical solution for a sufficiently small time step. We prove convergence to the solution of the associated continuous problem. We perform a linear stability analysis of the equation and describe some numerical experiments.
引用
收藏
页码:111 / 139
页数:29
相关论文
共 10 条
[1]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[2]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[3]   NUMERICAL-ANALYSIS OF 2-PHASE STEFAN PROBLEM BY METHOD OF FINITE-ELEMENTS [J].
CIAVALDINI, JF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) :464-487
[4]   NUMERICAL-ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE-ENERGY [J].
COPETTI, MIM ;
ELLIOTT, CM .
NUMERISCHE MATHEMATIK, 1992, 63 (01) :39-65
[6]  
DEFONTAINE D, 1973, J PHYS CHEM SOLIDS, V34, P1285, DOI 10.1016/S0022-3697(73)80026-5
[7]  
ELLIOTT CM, 1991, PREPRINT SERIES U MI, V887
[8]   SYSTEMS OF CAHN-HILLIARD EQUATIONS [J].
EYRE, DJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1993, 53 (06) :1686-1712
[9]   SPINODAL DECOMPOSITION IN TERNARY ALLOYS [J].
HOYT, JJ .
ACTA METALLURGICA, 1989, 37 (09) :2489-2497
[10]   LINEAR SPINODAL DECOMPOSITION IN A REGULAR TERNARY ALLOY [J].
HOYT, JJ .
ACTA METALLURGICA ET MATERIALIA, 1990, 38 (02) :227-231