High-affinity nitrate transport in roots of Arabidopsis depends on expression of the NAR2-like gene AtNRT3.1

被引:213
作者
Okamoto, M
Kumar, A
Li, WB
Wang, Y
Siddiqi, MY
Crawford, NM
Glass, ADM [1 ]
机构
[1] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
[2] Univ Calif San Diego, Div Biol Sci, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
关键词
D O I
10.1104/pp.105.074385
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The NAR2 protein of Chlamydomonas reinhardtii has no known transport activity yet it is required for high-affinity nitrate uptake. Arabidopsis (Arabidopsis thaliana) possesses two genes, AtNRT3.1 and AtNRT3.2, that are similar to the C. reinhardtii NAR2 gene. AtNRT3.1 accounts for greater than 99% of NRT3 mRNA and is induced 6-fold by nitrate. AtNRT3.2 was expressed constitutively at a very low level and did not compensate for the loss of AtNRT3.1 in two Atnrt3.1 mutants. Nitrate uptake by roots and nitrate induction of gene expression were analyzed in two T-DNA mutants, Atnrt3.1-1 and Atnrt3.1-2, disrupted in the AtNRT3.1 promoter and coding regions, respectively, in 5-week-old plants. Nitrate induction of the nitrate transporter genes AtNRT1.1 and AtNRT2.1 was reduced in Atnrt3.1 mutant plants, and this reduced expression was correlated with reduced nitrate concentrations in the tissues. Constitutive high-affinity influx was reduced by 34% and 89%, respectively, in Atnrt3.1-1 and Atnrt3.1-2 mutant plants, while high-affinity nitrate-inducible influx was reduced by 92% and 96%, respectively, following induction with 1 mM KNO(3) after 7 d of nitrogen deprivation. By contrast, low-affinity influx appeared to be unaffected. Thus, the constitutive high-affinity influx and nitrate-inducible high-affinity influx ( but not the low-affinity influx) of higher plant roots require a functional AtNRT3 (NAR2) gene.
引用
收藏
页码:1036 / 1046
页数:11
相关论文
共 34 条
[1]   RAPID COLORIMETRIC DETERMINATION OF NITRATE IN PLANT-TISSUE BY NITRATION OF SALICYLIC-ACID [J].
CATALDO, DA ;
HAROON, M ;
SCHRADER, LE ;
YOUNGS, VL .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1975, 6 (01) :71-80
[2]   Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in arabidopsis [J].
Cerezo, M ;
Tillard, P ;
Filleur, S ;
Muños, S ;
Daniel-Vedele, F ;
Gojon, A .
PLANT PHYSIOLOGY, 2001, 127 (01) :262-271
[3]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[4]   Molecular and physiological aspects of nitrate uptake in plants [J].
Crawford, NM ;
Glass, ADM .
TRENDS IN PLANT SCIENCE, 1998, 3 (10) :389-395
[5]   Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display [J].
Filleur, S ;
Daniel-Vedele, F .
PLANTA, 1999, 207 (03) :461-469
[6]   An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake [J].
Filleur, S ;
Dorbe, MF ;
Cerezo, M ;
Orsel, M ;
Granier, F ;
Gojon, A ;
Daniel-Vedele, F .
FEBS LETTERS, 2001, 489 (2-3) :220-224
[7]   Nitrate transporters in plants: structure, function and regulation [J].
Forde, BG .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2000, 1465 (1-2) :219-235
[8]   pGreen:: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation [J].
Hellens, RP ;
Edwards, EA ;
Leyland, NR ;
Bean, S ;
Mullineaux, PM .
PLANT MOLECULAR BIOLOGY, 2000, 42 (06) :819-832
[9]   Quantitative real-time PCR assay for determining transgene copy number in transformed plants [J].
Ingham, DJ ;
Beer, S ;
Money, S ;
Hansen, G .
BIOTECHNIQUES, 2001, 31 (01) :132-+
[10]   Functional analysis of an Arabidopsis T-DNA "Knockout" of the high-affinity NH4+ transporter AtAMT1;1 [J].
Kaiser, BN ;
Rawat, SR ;
Siddiqi, MY ;
Masle, J ;
Glass, ADM .
PLANT PHYSIOLOGY, 2002, 130 (03) :1263-1275