Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd)

被引:233
作者
Chapman, Karena W.
Chupas, Peter J.
Kepert, Cameron J. [1 ]
机构
[1] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
D O I
10.1021/ja060916r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The effect of M-II substitution on the magnitude of the negative thermal expansion (NTE) behavior within a series of Prussian Blue analogues, (MPtIV)-Pt-II(CN)(6) for M-II = Mn, Fe, Co, Ni, Cu, Zn, Cd, has been investigated using variable-temperature powder X-ray diffraction (100-400 K). The NTE behavior varies widely with MII substitution, from near zero thermal expansion in NiPt(CN)(6) (alpha = dIII dT = -1.02(11) x 10(-6) K-1) up to a maximum in CdPt(CN)(6) (alpha = -10.02(11) x 10(-6) K-1). The trend in the magnitude of the NTE behavior, with increasing atomic number (Z) of the M-II ion, follows the order Mn-II > Fe-II > Co-II > Ni-II < Cu-II > Zn-II > Cd-II, which correlates with the trends for MII cation size, the lattice parameter, and structural flexibility as indicated by the temperature-dependent structural refinements and Raman spectroscopy. Analysis of the temperature dependence of the average structures suggests that the differences in the thermal expansion are due principally to the different strengths of the metal-cyanide binding interaction and, accordingly, the different energies of transverse vibration of the cyanide bridge, with enhanced NTE behavior for more flexible lattices.
引用
收藏
页码:7009 / 7014
页数:6
相关论文
共 46 条
  • [1] Exceptional negative thermal expansion in AlPO4-17
    Attfield, MP
    Sleight, AW
    [J]. CHEMISTRY OF MATERIALS, 1998, 10 (07) : 2013 - 2019
  • [2] Negative thermal expansion
    Barrera, GD
    Bruno, JAO
    Barron, THK
    Allan, NL
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (04) : R217 - R252
  • [3] Elliptical multipole wiggler beamlines at the advanced photon source
    Beno, MA
    Kurtz, C
    Munkholm, A
    Rütt, U
    Engbretson, M
    Jennings, G
    Linton, J
    Knapp, GS
    Montano, PA
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 467 : 694 - 698
  • [4] Crystal structures of AuCN and AgCN and vibrational spectroscopic studies of AuCN, AgCN, and CuCN+
    Bowmaker, GA
    Kennedy, BJ
    Reid, JC
    [J]. INORGANIC CHEMISTRY, 1998, 37 (16) : 3968 - 3974
  • [5] CRYSTAL-STRUCTURE OF CADMIUM HEXACYANOPALLADATE(IV)
    BUSER, HJ
    RON, G
    LUDI, A
    ENGEL, P
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1974, (23): : 2473 - 2474
  • [6] Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:: An atomic pair distribution function analysis
    Chapman, KW
    Chupas, PJ
    Kepert, CJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (44) : 15630 - 15636
  • [7] CHAPMAN KW, IN PRESS PHYS B
  • [8] Rapid-acquisition pair distribution function (RA-PDF) analysis
    Chupas, PJ
    Qiu, XY
    Hanson, JC
    Lee, PL
    Grey, CP
    Billinge, SJL
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2003, 36 : 1342 - 1347
  • [9] In situ X-ray diffraction and solid-state NMR study of the fluorination of γ-Al2O3 with HCF2Cl
    Chupas, PJ
    Ciraolo, MF
    Hanson, JC
    Grey, CP
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (08) : 1694 - 1702
  • [10] Dunbar KR, 1997, PROG INORG CHEM, V45, P283