The integration of glutathione homeostasis and redox signaling

被引:199
作者
Meyer, Andreas J. [1 ]
机构
[1] Heidelberg Univ, Heidelberg Inst Plant Sci HIP, D-69120 Heidelberg, Germany
关键词
compartmentalization; glutaredoxin; glutathione homeostasis; redox signaling; roGFP;
D O I
10.1016/j.jplph.2007.10.015
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Formation of reactive oxygen species (ROS) is a common feature of abiotic and biotic stress reactions. ROS need to be detoxified to avoid deleterious reactions, but at the same time, the increased formation of ROS can also be exploited for redox signaling. Glutathione, as the most abundant low-molecular weight thiol in the cellular redox system, is used for both detoxification of ROS and transmission of redox signals. Detoxification of H2O2 through the glutathione-ascorbate cycle leads to a transient change in the degree of oxidation of the cellular glutathione pool, and thus a change in the glutathione redox potential. The shift in the glutathione redox potential can be sensed by glutaredoxins (GRXs), small ubiquitous oxidoreductases, which reversibly transfer electrons between the glutathione redox buffer and thiol groups of target proteins. White very little is known about native GRX target proteins and their behavior in vivo, it is shown here that reduction-oxidation-sensitive GFP (roGFP), when expressed in plants, is an artificial target protein of GRXs. The specific interaction of roGFP with GRX results in continuous formation and release of the roGFP disulfide bridge depending on the actual redox potential of the cellular glutathione buffer. Ratiometric analysis of redox-dependent fluorescence allows dynamic imaging of the glutathione redox potential. It was hypothesized that a similar equilibration occurs between the glutathione buffer and native target proteins of GRXs. As a consequence, even minor deviations in the glutathione redox potential due to either depletion of reduced glutathione (GSH) or increasing oxidation can be exploited for fine tuning the activity of target proteins. The integration of the glutathione buffer with redox-active target proteins is a local reaction in specific subcellular compartments. This observation emphasizes the importance of subcellular compartmentalization in understanding the biology of the cellular redox system in plants. (C) 2007 Elsevier GmbH. All rights reserved.
引用
收藏
页码:1390 / 1403
页数:14
相关论文
共 113 条
[1]   The chloroplast protein disulfide isomerase RB60 reacts with a regulatory disulfide of the RNA-binding protein RB47 [J].
Alergand, T ;
Peled-Zehavi, H ;
Katz, Y ;
Danon, A .
PLANT AND CELL PHYSIOLOGY, 2006, 47 (04) :540-548
[2]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[3]   Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology [J].
Baier, M ;
Dietz, KJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (416) :1449-1462
[4]  
Baier M., 1998, Prog. Bot, V60, P282, DOI DOI 10.1007/978-3-642-59940-8_11
[5]   Evidence for a direct link between glutathione biosynthesis and stress fefense gene expression in Arabidopsis [J].
Ball, L ;
Accotto, GP ;
Bechtold, U ;
Creissen, G ;
Funck, D ;
Jimenez, A ;
Kular, B ;
Leyland, N ;
Mejia-Carranza, J ;
Reynolds, H ;
Karpinski, S ;
Mullineaux, PM .
PLANT CELL, 2004, 16 (09) :2448-2462
[6]   Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein [J].
Björnberg, O ;
Ostergaard, H ;
Winther, JR .
BIOCHEMISTRY, 2006, 45 (07) :2362-2371
[7]   Measuring intracellular redox conditions using GFP-based sensors [J].
Bjornberg, Olof ;
Ostergaard, Henrik ;
Winther, Jakob R. .
ANTIOXIDANTS & REDOX SIGNALING, 2006, 8 (3-4) :354-361
[8]   Resemblance and dissemblance of Arabidopsis type II peroxiredoxins:: Similar sequences for divergent gene expression, protein localization, and activity [J].
Bréhélin, C ;
Meyer, EH ;
de Souris, JP ;
Bonnard, G ;
Meyer, Y .
PLANT PHYSIOLOGY, 2003, 132 (04) :2045-2057
[9]   Redox regulation: A broadening horizon [J].
Buchanan, BB ;
Balmer, Y .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :187-220
[10]   Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo [J].
Cairns, Narelle G. ;
Pasternak, Maciej ;
Wachter, Andreas ;
Cobbett, Christopher S. ;
Meyer, Andreas J. .
PLANT PHYSIOLOGY, 2006, 141 (02) :446-455