Dissolution of Platinum: Limits for the Deployment of Electrochemical Energy Conversion?

被引:361
作者
Topalov, Angel A. [1 ,2 ]
Katsounaros, Ioannis [1 ]
Auinger, Michael [1 ]
Cherevko, Serhiy [1 ]
Meier, Josef C. [1 ]
Klemm, Sebastian O. [1 ]
Mayrhofer, Karl J. J. [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Interface Chem & Surface Engn, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Ctr Electrochem Sci, D-44780 Bochum, Germany
关键词
catalyst stability; dissolution processes; electrochemistry; fuel cells; platinum; ELECTROLYTE FUEL-CELLS; OXYGEN REDUCTION; ICP-MS; CATALYSTS; ELECTROCATALYSTS; DEGRADATION; IRON;
D O I
10.1002/anie.201207256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Platinum stability: Dissolution of Pt, which is one major degradation mechanism in, for example, hydrogen/air fuel cells, was monitored under potentiodynamic and potentiostatic conditions. The highly sensitive and time-resolving dissolution monitoring enables the distinction between anodic and cathodic dissolution processes during potential transient and chronoamperometric experiments, and the precise quantification of the amount of dissolved Pt. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:12613 / 12615
页数:3
相关论文
共 26 条
[1]  
[Anonymous], 2007, ANGEW CHEM INT EDIT
[2]   Sub-Nanometer-Resolution Elemental Mapping of "Pt3Co" Nanoparticle Catalyst Degradation in Proton-Exchange Membrane Fuel Cells [J].
Carlton, Christopher E. ;
Chen, Shuo ;
Ferreira, Paulo J. ;
Allard, Lawrence F. ;
Shao-Horn, Yang .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02) :161-166
[3]   Kinetic model of platinum dissolution in PEMFCs [J].
Darling, RM ;
Meyers, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (11) :A1523-A1527
[4]   Just a Dream-or Future Reality? [J].
Gasteiger, Hubert A. ;
Markovic, Nenad M. .
SCIENCE, 2009, 324 (5923) :48-49
[5]   Temperature dependence of two types of dissolution of platinum in acid media. An electrochemical nanogravimetric study [J].
Inzelt, Gyoergy ;
Berkes, Balazs ;
Kriston, Akos .
ELECTROCHIMICA ACTA, 2010, 55 (16) :4742-4749
[6]   Surface-oxide growth at platinum electrodes in aqueous H2SO4 Reexamination of its mechanism through combined cyclic-voltammetry, electrochemical quartz-crystal nanobalance, and Auger electron spectroscopy measurements [J].
Jerkiewicz, G ;
Vatankhah, G ;
Lessard, J ;
Soriaga, MP ;
Park, YS .
ELECTROCHIMICA ACTA, 2004, 49 (9-10) :1451-1459
[7]   A RING-DISK ELECTRODE STUDY OF CURRENT/POTENTIAL BEHAVIOUR OF PLATINUM IN 1.0 M SULPHURIC AND 0.1 M PERCHLORIC ACIDS [J].
JOHNSON, DC ;
NAPP, DT ;
BUCKENST.S .
ELECTROCHIMICA ACTA, 1970, 15 (09) :1493-&
[8]   Time and potential resolved dissolution analysis of rhodium using a microelectrochemical flow cell coupled to an ICP-MS [J].
Klemm, Sebastian O. ;
Karschin, Arndt ;
Schuppert, Anna K. ;
Topalov, Angel A. ;
Mingers, Andrea M. ;
Katsounaros, Ioannis ;
Mayrhofer, Karl J. J. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2012, 677 :50-55
[9]   Coupling of a high throughput microelectrochemical cell with online multielemental trace analysis by ICP-MS [J].
Klemm, Sebastian O. ;
Topalov, Angel A. ;
Laska, Claudius A. ;
Mayrhofer, Karl J. J. .
ELECTROCHEMISTRY COMMUNICATIONS, 2011, 13 (12) :1533-1535
[10]   Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells [J].
Lefevre, Michel ;
Proietti, Eric ;
Jaouen, Frederic ;
Dodelet, Jean-Pol .
SCIENCE, 2009, 324 (5923) :71-74