Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System

被引:549
作者
Yang, Ya [1 ]
Zhang, Hulin [1 ]
Chen, Jun [1 ]
Jing, Qingshen [1 ]
Zhou, Yu Sheng [1 ]
Wen, Xiaonan [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
triboelectric nanogenerator; self-powered; polytetrafluoroethylene; displacement sensor; power density; touch pad; ENERGY-CONVERSION; NANOSENSOR; GENERATOR;
D O I
10.1021/nn403021m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a single-electrode-based sliding-mode triboelectric nanogenerator (TENG) that not only can harvest mechanical energy but also is a self-powered displacement vector sensor system for touching pad technology. By utilizing the relative sliding between an electrodeless polytetrafluoroethylene (PTFE) patch with surface-etched nanoparticles and an Al electrode that is grounded, the fabricated TENG can produce an open-circuit voltage up to 1100 V, a short-circuit current density of 6 mA/m(2), and a maximum power density of 350 mW/m(2) on a load of 100 M Omega, which can be used to instantaneously drive 100 green-light-emitting diodes (LEDs). The working mechanism of the TENG is based on the charge transfer between the Al electrode and the ground by modulating the relative sliding distance between the tribo-charged PTFE patch and the Al plate. Grating of linear rows on the Al electrode enables the detection of the sliding speed of the PTFE patch along one direction. Moreover, we demonstrated that 16 Al electrode channels arranged along four directions were used to monitor the displacement (the direction and the location) of the PTFE patch at the center, where the output voltage signals in the 16 channels were recorded in real-time to form a mapping figure. The advantage of this design is that it only requires the bottom Al electrode to be grounded and the top PTFE patch needs no electrical contact, which is beneficial for energy harvesting in automobile rotation mode and touch pad applications.
引用
收藏
页码:7342 / 7351
页数:10
相关论文
共 24 条
[1]  
[Anonymous], NANO LETT
[2]  
[Anonymous], 1987, ELECTROSTATICS PRINC
[3]   Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency [J].
Chang, Chieh ;
Tran, Van H. ;
Wang, Junbo ;
Fuh, Yiin-Kuen ;
Lin, Liwei .
NANO LETTERS, 2010, 10 (02) :726-731
[4]   Flexible triboelectric generator! [J].
Fan, Feng-Ru ;
Tian, Zhong-Qun ;
Wang, Zhong Lin .
NANO ENERGY, 2012, 1 (02) :328-334
[5]   The development and performance of an electrostatic generator operating under high air pressure [J].
Herb, RG ;
Parkinson, DB ;
Kerst, DW .
PHYSICAL REVIEW, 1937, 51 (02) :75-83
[6]   A micromechanical thermal displacement sensor with nanometre resolution [J].
Lantz, MA ;
Binnig, GK ;
Despont, M ;
Drechsler, U .
NANOTECHNOLOGY, 2005, 16 (08) :1089-1094
[7]   Segmentally Structured Disk Triboelectric Nanogenerator for Harvesting Rotational Mechanical Energy [J].
Lin, Long ;
Wang, Sihong ;
Xie, Yannan ;
Jing, Qingshen ;
Niu, Simiao ;
Hu, Youfan ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (06) :2916-2923
[8]   Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified TiO2 Nanomaterials [J].
Lin, Zong-Hong ;
Xie, Yannan ;
Yang, Ya ;
Wang, Sihong ;
Zhu, Guang ;
Wang, Zhong Lin .
ACS NANO, 2013, 7 (05) :4554-4560
[9]   A Self-Powered Triboelectric Nanosensor for Mercury Ion Detection [J].
Lin, Zong-Hong ;
Zhu, Guang ;
Zhou, Yu Sheng ;
Yang, Ya ;
Bai, Peng ;
Chen, Jun ;
Wang, Zhong Lin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (19) :5065-5069
[10]   Novel absolute linear displacement sensor utilizing giant magnetoresistance elements [J].
Miller, MM ;
Prinz, GA ;
Lubitz, P ;
Hoines, L ;
Krebs, JJ ;
Cheng, SF ;
Parsons, FG .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) :4284-4286