A LC3-Interacting Motif in the Influenza A Virus M2 Protein Is Required to Subvert Autophagy and Maintain Virion Stability

被引:198
作者
Beale, Rupert [1 ,2 ]
Wise, Helen [3 ,4 ]
Stuart, Amanda [4 ]
Ravenhill, Benjamin J. [1 ]
Digard, Paul [3 ,4 ]
Randow, Felix [1 ,2 ]
机构
[1] MRC Lab Mol Biol, Cambridge CB2 0QH, England
[2] Univ Cambridge, Dept Med, Addenbrookes Hosp, Cambridge CB2 0QQ, England
[3] Univ Edinburgh, Roslin Inst, Edinburgh EH25 9RG, Midlothian, Scotland
[4] Univ Cambridge, Dept Pathol, Div Virol, Cambridge CB2 0QQ, England
基金
英国生物技术与生命科学研究理事会;
关键词
ION-CHANNEL PROTEIN; PROTON CHANNEL; ANTIBACTERIAL AUTOPHAGY; RNA VIRUSES; IMMUNITY; CELLS; REPLICATION; LIPIDATION; MORPHOLOGY; RESTRICTS;
D O I
10.1016/j.chom.2014.01.006
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Autophagy recycles cellular components and defends cells against intracellular pathogens. While viruses must evade autophagocytic destruction, some viruses can also subvert autophagy for their own benefit. The ability of influenza A virus (IAV) to evade autophagy depends on the Matrix 2 (M2) ion-channel protein. We show that the cytoplasmic tail of IAV M2 interacts directly with the essential autophagy protein LC3 and promotes LC3 relocalization to the unexpected destination of the plasma membrane. LC3 binding is mediated by a highly conserved LC3-interacting region (LIR) in M2. The M2 LIR is required for LC3 redistribution to the plasma membrane in virus-infected cells. Mutations in M2 that abolish LC3 binding interfere with filamentous budding and reduce virion stability. IAV therefore subverts autophagy by mimicking a host short linear protein-protein interaction motif. This strategy may facilitate transmission of infection between organisms by enhancing the stability of viral progeny.
引用
收藏
页码:239 / 247
页数:9
相关论文
共 59 条
[1]   ATG8 Family Proteins Act as Scaffolds for Assembly of the ULK Complex SEQUENCE REQUIREMENTS FOR LC3-INTERACTING REGION (LIR) MOTIFS [J].
Alemu, Endalkachew Ashenafi ;
Lamark, Trond ;
Torgersen, Knut Martin ;
Birgisdottir, Aasa Birna ;
Larsen, Kenneth Bowitz ;
Jain, Ashish ;
Olsvik, Hallvard ;
Overvatn, Aud ;
Kirkin, Vladimir ;
Johansen, Terje .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (47) :39275-39290
[2]  
BACHI T, 1973, J VIROL, V12, P1173
[3]   High-throughput mapping of a dynamic signaling network in mammalian cells [J].
Barrios-Rodiles, M ;
Brown, KR ;
Ozdamar, B ;
Bose, R ;
Liu, Z ;
Donovan, RS ;
Shinjo, F ;
Liu, YM ;
Dembowy, J ;
Taylor, IW ;
Luga, V ;
Przulj, N ;
Robinson, M ;
Suzuki, H ;
Hayashizaki, Y ;
Jurisica, I ;
Wrana, JL .
SCIENCE, 2005, 307 (5715) :1621-1625
[4]   Pacing a small cage: mutation and RNA viruses [J].
Belshaw, Robert ;
Gardner, Andy ;
RarnbaUt, Andrew ;
Pybus, Oliver G. .
TRENDS IN ECOLOGY & EVOLUTION, 2008, 23 (04) :188-193
[5]   Reverse genetics studies on the filamentous morphology of influenza A virus [J].
Bourmakina, SV ;
García-Sastre, A .
JOURNAL OF GENERAL VIROLOGY, 2003, 84 :517-527
[6]   The role of 'eat-me' signals and autophagy cargo receptors in innate immunity [J].
Boyle, Keith B. ;
Randow, Felix .
CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (03) :339-348
[7]   Transmission of influenza A in human beings [J].
Brankston, Gabrielle ;
Gitterman, Leah ;
Hirji, Zahir ;
Lemieux, Camille ;
Gardam, Michael .
LANCET INFECTIOUS DISEASES, 2007, 7 (04) :257-265
[8]   How viruses hijack cell regulation [J].
Davey, Norman E. ;
Trave, Gilles ;
Gibson, Toby J. .
TRENDS IN BIOCHEMICAL SCIENCES, 2011, 36 (03) :159-169
[9]   Autophagy: An Emerging Immunological Paradigm [J].
Deretic, Vojo .
JOURNAL OF IMMUNOLOGY, 2012, 189 (01) :15-20
[10]   Autophagy Proteins Regulate the Secretory Component of Osteoclastic Bone Resorption [J].
DeSelm, Carl J. ;
Miller, Brian C. ;
Zou, Wei ;
Beatty, Wandy L. ;
van Meel, Helena ;
Takahata, Yoshifumi ;
Klumperman, Judith ;
Tooze, Sharon A. ;
Teitelbaum, Steven L. ;
Virgin, Herbert W. .
DEVELOPMENTAL CELL, 2011, 21 (05) :966-974