Recent Progress in Non-Precious Catalysts for Metal-Air Batteries

被引:676
作者
Cao, Ruiguo [2 ]
Lee, Jang-Soo [2 ]
Liu, Meilin [1 ]
Cho, Jaephil [2 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Ulsan Natl Inst Sci & Technol UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
energy storage; metal-air batteries; non-precious catalysts; oxygen reduction reaction; OXYGEN REDUCTION REACTION; RECHARGEABLE LI-O-2 BATTERIES; DOPED CARBON NANOTUBES; EXCELLENT ELECTROCATALYTIC ACTIVITY; PORPHYRIN-CORROLE DYADS; MEMBRANE FUEL-CELLS; MANGANESE OXIDE; LI-AIR; GRAPHENE OXIDE; LITHIUM BATTERIES;
D O I
10.1002/aenm.201200013
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrical energy storage and conversion is vital to a clean, sustainable, and secure energy future. Among all electrochemical energy storage devices, metal-air batteries have potential to offer the highest energy density, representing the most promising systems for portable (electronics), mobile (electrical vehicles), and stationary (micro-grids) applications. To date, however, many fundamental issues are yet to be overcome to realize this potential. For example, efficient catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) at the air-electrode are yet to be developed to significantly reduce the polarization loss in metal-air batteries, which severely hinders the rate capability, energy efficiency, and operational life. In this progress report, a brief overview is first presented of the critical issues relevant to air-electrodes in metal-air batteries. Some recent advancements in the development of non-precious catalysts for ORR in Li-air and Zn-air batteries are then highlighted, including transition metal oxides, low-dimensional carbon-based structures, and other catalysts such as transition-metal macrocycles and metal nitrides. New directions and future perspectives for metal-air batteries are also outlined.
引用
收藏
页码:816 / 829
页数:14
相关论文
共 143 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   Identifying Capacity Limitations in the Li/Oxygen Battery Using Experiments and Modeling [J].
Albertus, Paul ;
Girishkumar, G. ;
McCloskey, Bryan ;
Sanchez-Carrera, Roel S. ;
Kozinsky, Boris ;
Christensen, Jake ;
Luntz, A. C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A343-A351
[3]   Functional Composite Materials Based on Chemically Converted Graphene [J].
Bai, Hua ;
Li, Chun ;
Shi, Gaoquan .
ADVANCED MATERIALS, 2011, 23 (09) :1089-1115
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[6]   Oxygen Reduction Properties of Bifunctional α-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes [J].
Benbow, E. M. ;
Kelly, S. P. ;
Zhao, L. ;
Reutenauer, J. W. ;
Suib, S. L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :22009-22017
[7]   MnOx/C composites as electrode materials.: I.: Synthesis, XRD and cyclic voltammetric investigation [J].
Bezdicka, P ;
Grygar, T ;
Klápste, B ;
Vondrák, J .
ELECTROCHIMICA ACTA, 1999, 45 (06) :913-920
[8]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[9]   Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction [J].
Bing, Yonghong ;
Liu, Hansan ;
Zhang, Lei ;
Ghosh, Dave ;
Zhang, Jiujun .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2184-2202
[10]   ELECTROCHEMICAL BEHAVIOR OF METALLIC OXIDES [J].
BRENET, JP .
JOURNAL OF POWER SOURCES, 1979, 4 (03) :183-190