On the Fermat-Weber center of a convex object

被引:15
作者
Carmi, P
Har-Peled, S
Katz, MJ [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
[2] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2005年 / 32卷 / 03期
基金
美国国家科学基金会;
关键词
Fermat-Weber center; approximation algorithms;
D O I
10.1016/j.comgeo.2005.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for any convex object Q in the plane, the average distance from the Fermat-Weber center of Q to the points in Q is at least Delta(Q)/7, where A(Q) is the diameter of Q, and that there exists a convex object P for which this distance is Delta(P)/6. We use this result to obtain a linear-time approximation scheme for finding an approximate Fermat-Weber center of a convex polygon Q. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:188 / 195
页数:8
相关论文
共 5 条
[1]   THE ALGEBRAIC DEGREE OF GEOMETRIC OPTIMIZATION PROBLEMS [J].
BAJAJ, C .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :177-191
[2]   Fast approximations for sums of distances, clustering and the Fermat-Weber problem [J].
Bose, P ;
Maheshwari, A ;
Morin, P .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2003, 24 (03) :135-146
[3]   ALGEBRAIC OPTIMIZATION - THE FERMAT-WEBER LOCATION PROBLEM [J].
CHANDRASEKARAN, R ;
TAMIR, A .
MATHEMATICAL PROGRAMMING, 1990, 46 (02) :219-224
[4]  
FEKETE SP, 2000, P 16 ANN ACM S COMP, P70
[5]  
Wesolowsky G. O., 1993, Location Science, V1, P5