Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo

被引:47
作者
Nairismägi, J
Pitkänen, A
Narkilahti, S
Huttunen, J
Kauppinen, RA
Gröhn, OHJ
机构
[1] Univ Kuopio, Dept Biomed NMR, FIN-70211 Kuopio, Finland
[2] Univ Kuopio, Natl Bio NMR Facil, Virtanen Inst Mol Sci, FIN-70211 Kuopio, Finland
[3] Univ Kuopio, AI Virtanen Inst Mol Sci, Epilepsy Res Lab, FIN-70211 Kuopio, Finland
[4] Univ Kuopio, AI Virtanen Inst Mol Sci, Dept Cognit Neurobiol, FIN-70211 Kuopio, Finland
[5] Kuopio Univ Hosp, Dept Neurol, SF-70210 Kuopio, Finland
[6] Univ Birmingham, Sch Sport & Exercise Sci, Birmingham, W Midlands, England
基金
芬兰科学院;
关键词
D O I
10.1016/j.neuroimage.2005.09.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mn2+ -enhanced magnetic resonance imaging (MEMRI) was used to characterize activity-dependent plasticity in the moss), fiber pathway after intraperitoneal kainic acid (KA) injection. Enhancement of the MEMRI signal in the dentate gyrus and the CA3 subregion of the hippocampus was evident 3 to 5 days after injection of MnCl2 into the entorhinal cortex both in control and KA-injected rats. In volume-rendered three-dimensional reconstructions, Mn2+-induced signal enhancement revealed the extent of the mossy fiber pathway throughout the septotemporal axis of the dentate gyrus. An increase in the number of Mn2+ -enhanced pixels in the dentate gyrus and CA3 subfield of rats with KA injection correlated (P < 0.05) with histologically verified mossy fiber sprouting. These data demonstrate that MEMRI can be used to detect specific changes at the cellular level during activity-dependent plasticity in vivo. The present findings also suggest that MEMRI signal changes can serve as an imaging marker of epileptogenesis. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:130 / 135
页数:6
相关论文
共 31 条
[1]   THE 3-DIMENSIONAL ORGANIZATION OF THE HIPPOCAMPAL-FORMATION - A REVIEW OF ANATOMICAL DATA [J].
AMARAL, DG ;
WITTER, MP .
NEUROSCIENCE, 1989, 31 (03) :571-591
[2]  
CAVAZOS JE, 1991, J NEUROSCI, V11, P2795
[3]   Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat [J].
Dubé, C ;
Boyet, S ;
Marescaux, C ;
Nehlig, A .
EXPERIMENTAL NEUROLOGY, 2000, 162 (01) :146-157
[4]   Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium-pilocarpine model of epilepsy in the immature and adult rat [J].
Dubé, C ;
Boyet, S ;
Marescaux, C ;
Nehlig, A .
EXPERIMENTAL NEUROLOGY, 2001, 167 (02) :227-241
[5]  
Fernandes MJD, 1999, J CEREBR BLOOD F MET, V19, P195
[6]   Hippocampal granule cell activity and c-Fos expression during spontaneous seizures in awake, chronically epileptic, pilocarpine-treated rats: Implications for hippocampal epileptogenesis [J].
Harvey, BD ;
Sloviter, RS .
JOURNAL OF COMPARATIVE NEUROLOGY, 2005, 488 (04) :442-463
[7]   Changes in TrkB-ERK1/2-CREB/Elk-1 pathways in hippocampal mossy fiber organization after traumatic brain injury [J].
Hu, BR ;
Liu, CL ;
Bramlett, T ;
Sick, TJ ;
Alonso, TF ;
Chen, SY ;
Dietrich, WD .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2004, 24 (08) :934-943
[8]   COMPARISON OF CA2+, SR2+, AND MN2+ FLUXES IN MITOCHONDRIA OF THE PERFUSED RAT-HEART [J].
HUNTER, DR ;
KOMAI, H ;
HAWORTH, RA ;
JACKSON, MD ;
BERKOFF, HA .
CIRCULATION RESEARCH, 1980, 47 (05) :721-727
[9]  
Insausti R, 1997, HIPPOCAMPUS, V7, P146, DOI 10.1002/(SICI)1098-1063(1997)7:2<146::AID-HIPO4>3.0.CO
[10]  
2-L