The coactivator-associated arginine methyltransferase is necessary for muscle differentiation - CARM1 coactivates myocyte enhancer factor-2

被引:119
作者
Chen, SL
Loffler, KA
Chen, DG
Stallcup, MR
Muscat, GEO [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, Ctr Cellular & Mol Biol, St Lucia, Qld 4072, Australia
[2] Univ So Calif, Dept Pathol, Los Angeles, CA 90089 USA
[3] Univ So Calif, Dept Biochem & Mol Biol, Los Angeles, CA 90089 USA
关键词
D O I
10.1074/jbc.M109835200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Studies with the myogenic basic helix-loop-helix and MADS box factors suggest that efficient transactivation is dependent on the recruitment of the steroid receptor coactivator (SRC) and the cofactors p300 and p300/CBP-associated factor. SRCs have been demonstrated to recruit CARM1 (coactivator-associated arginine methyltransferase-1), a member of the S-adenOSyl-L-methionine-dependent PRMTI-5 (protein-arginine N-methyltransferase-1-5) family, which catalyzes the methylation of arginine residues. This prompted us to investigate the functional role of CARM1/PRMT4 during skeletal myogenesis. We demonstrate that CARM1 and the SRC cofactor GRIP-1 cooperatively stimulate the activity of myocyte enhancer factor-2C (MEF2C). Moreover, there are direct interactions among MEF2C, GRIP-1, and CARM1. Chromatin immunoprecipitation demonstrated the in vivo recruitment of MEF2 and CARM1 to the endogenous muscle creatine kinase promoter in a differentiation-dependent manner. Furthermore, CARM1 is expressed in somites during embryogenesis and in the nuclei of muscle cells. Treatment of myogenic cells with the methylation inhibitor adenosine dialdehyde or tet-regulated CARM1 "antisense" expression did not affect expression of MyoD. However, inhibition of CARM1. inhibited differentiation and abrogated the expression of the key transcription factors (myogenin and MEF2) that initiate the differentiation cascade. This work clearly demonstrates that the arginine methyltransferase CARM1 potentiates myogenesis and supports the positive role of arginine methylation in mammalian differentiation.
引用
收藏
页码:4324 / 4333
页数:10
相关论文
共 30 条
[1]   A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor [J].
Abramovich, C ;
Yakobson, B ;
Chebath, J ;
Revel, M .
EMBO JOURNAL, 1997, 16 (02) :260-266
[2]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[3]   Multiple roles for the MyoD basic region in transmission of transcriptional activation signals and interaction with MEF2 [J].
Black, BL ;
Molkentin, JD ;
Olson, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (01) :69-77
[4]   Regulation of transcription by a protein methyltransferase [J].
Chen, DG ;
Ma, H ;
Hong, H ;
Koh, SS ;
Huang, SM ;
Schurter, BT ;
Aswad, DW ;
Stallcup, MR .
SCIENCE, 1999, 284 (5423) :2174-2177
[5]   Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300 [J].
Chen, DG ;
Huang, SM ;
Stallcup, MR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (52) :40810-40816
[6]  
Chen SL, 2000, GENE DEV, V14, P1209
[7]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[8]   MYOGENIN INDUCES THE MYOCYTE-SPECIFIC ENHANCER BINDING-FACTOR MEF-2 INDEPENDENTLY OF OTHER MUSCLE-SPECIFIC GENE-PRODUCTS [J].
CSERJESI, P ;
OLSON, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (10) :4854-4862
[9]   Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation [J].
Eckner, R ;
Yao, TP ;
Oldread, E ;
Livingston, DM .
GENES & DEVELOPMENT, 1996, 10 (19) :2478-2490
[10]   A NEW MYOCYTE-SPECIFIC ENHANCER-BINDING FACTOR THAT RECOGNIZES A CONSERVED ELEMENT ASSOCIATED WITH MULTIPLE MUSCLE-SPECIFIC GENES [J].
GOSSETT, LA ;
KELVIN, DJ ;
STERNBERG, EA ;
OLSON, EN .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5022-5033