Large movement in the C terminus of CLC-0 chloride channel during slow gating

被引:83
作者
Bykova, Ekaterina A.
Zhang, Xiao-Dong
Chen, Tsung-Yu
Zheng, Jie [1 ]
机构
[1] Univ Calif Davis, Dept Physiol & Membrane Biol, Davis, CA 95616 USA
[2] Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA
[3] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA
关键词
D O I
10.1038/nsmb1176
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chloride channels and transporters of the CLC gene family are expressed in virtually all cell types and are crucial in the regulation of membrane potential, chloride homeostasis and intravesicular pH. There are two gating processes that open CLC channels-fast and slow. The fast gating process in CLC channels has recently been linked to a small movement of a glutamate side chain. However, the molecular mechanism underlying the slow gating process is still elusive. Using spectroscopic microscopy, we observed a large backbone movement in the C terminus of the CLC-0 chloride channel that was functionally linked to slow gating. We further showed that the C-terminal movement had a time course similar to slow gating. In addition, a mutation known to lock the slow gate open prevented movement of the C terminus. When combined with recent structural information on the CLC C terminus, our findings provide a structural model for understanding the conformational changes linked to slow gating in CLC transport proteins.
引用
收藏
页码:1115 / 1119
页数:5
相关论文
共 40 条
[1]   Separate ion pathways in a Cl+/H+ exchanger [J].
Accardi, A ;
Walden, M ;
Nguitragool, W ;
Jayaram, H ;
Williams, C ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 2005, 126 (06) :563-570
[2]   Temperature dependence of human muscle ClC-1 chloride channel [J].
Bennetts, B ;
Roberts, ML ;
Bretag, AH ;
Rychkov, GY .
JOURNAL OF PHYSIOLOGY-LONDON, 2001, 535 (01) :83-93
[3]   Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy [J].
Cha, A ;
Snyder, GE ;
Selvin, PR ;
Bezanilla, F .
NATURE, 1999, 402 (6763) :809-813
[4]   Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement [J].
Chanda, B ;
Asamoah, OK ;
Blunck, R ;
Roux, B ;
Bezanilla, F .
NATURE, 2005, 436 (7052) :852-856
[5]   Extracellular zinc ion inhibits ClC-0 chloride channels by facilitating slow gating [J].
Chen, TY .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (06) :715-726
[6]   Structure and function of CLC channels [J].
Chen, TY .
ANNUAL REVIEW OF PHYSIOLOGY, 2005, 67 :809-839
[7]   Nonequilibrium gating and voltage dependence of the ClC-0 Cl- channel [J].
Chen, TY ;
Miller, C .
JOURNAL OF GENERAL PHYSIOLOGY, 1996, 108 (04) :237-250
[8]   X-ray structure of a CIC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity [J].
Dutzler, R ;
Campbell, EB ;
Cadene, M ;
Chait, BT ;
MacKinnon, R .
NATURE, 2002, 415 (6869) :287-294
[9]   Gating the selectivity filter in ClC chloride channels [J].
Dutzler, R ;
Campbell, EB ;
MacKinnon, R .
SCIENCE, 2003, 300 (5616) :108-112
[10]   Functional and structural conservation of CBS domains from CLC chloride channels [J].
Estévez, R ;
Pusch, M ;
Ferrer-Costa, C ;
Orozco, M ;
Jentsch, TJ .
JOURNAL OF PHYSIOLOGY-LONDON, 2004, 557 (02) :363-378