On the Brillouin-Zone Integrations in Second-Order Many-Body Perturbation Calculations for Extended Systems of One-Dimensional Periodicity

被引:24
作者
Shimazaki, Tomomi [4 ]
Hirata, So [1 ,2 ,3 ]
机构
[1] Univ Florida, Quantum Theory Project, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Chem, Ctr Macromol Sci & Engn, Gainesville, FL 32611 USA
[3] Univ Florida, Dept Phys, Ctr Macromol Sci & Engn, Gainesville, FL 32611 USA
[4] Natl Inst Adv Ind Sci & Technol, Tsukuba, Ibaraki 3058568, Japan
关键词
many-body perturbation theory; polymers; periodic boundary conditions; Brillouin-zone integrations; quasi-particle energy bands; SPECIAL POINTS; POLYACETYLENE;
D O I
10.1002/qua.22176
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The validity and accuracy of various ways of drastically reducing the number of k-points in the Brillouin zone integrations Occurring in second-order many-body perturbation calculations of one-dimensional solids has been investigated. The most promising approximation can recover correlation energies of polyethylene and polyacetylene within 1% of converged values at less than a tenth of usual computational cost. The quasi-particle energy bands have also been reproduced quantitatively with the same approximation. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 109: 2953-2959, 2009
引用
收藏
页码:2953 / 2959
页数:7
相关论文
共 11 条
[1]   SPECIAL POINTS IN BRILLOUIN ZONE [J].
CHADI, DJ ;
COHEN, ML .
PHYSICAL REVIEW B, 1973, 8 (12) :5747-5753
[2]   Fourier representation methods for Moller-Plesset perturbation theory in one-dimensionally periodic systems [J].
Fripiat, JG ;
Delhalle, J ;
Harris, FE .
CHEMICAL PHYSICS LETTERS, 2006, 422 (1-3) :11-14
[3]   Analytic quadratic integration over the two-dimensional Brillouin zone [J].
Harris, FE .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (03) :621-630
[4]   Coupled-cluster singles and doubles for extended systems [J].
Hirata, S ;
Podeszwa, R ;
Tobita, M ;
Bartlett, RJ .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (06) :2581-2592
[5]   Density-functional crystal orbital study on the structures and energetics of polyacetylene isomers [J].
Hirata, S ;
Torii, H ;
Tasumi, M .
PHYSICAL REVIEW B, 1998, 57 (19) :11994-12001
[6]  
HIRATA S, 2009, POLYMER
[7]  
March N.M., 1967, MANY BODY PROBLEMS Q
[8]  
MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI [10.1103/PhysRevB.13.5188, 10.1103/PhysRevB.16.1746]
[9]   QUASIPARTICLE ENERGY-BAND STRUCTURES IN SEMICONDUCTING POLYMERS - CORRELATION-EFFECTS ON THE BAND-GAP IN POLYACETYLENE [J].
SUHAI, S .
PHYSICAL REVIEW B, 1983, 27 (06) :3506-3518