Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes

被引:163
作者
Rosen, BP [1 ]
机构
[1] Wayne State Univ, Sch Med, Dept Biochem & Mol Biol, Detroit, MI 48201 USA
来源
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR AND INTEGRATIVE PHYSIOLOGY | 2002年 / 133卷 / 03期
关键词
soft metal; heavy metal; metalloid; arsenic; antimony; cadmium; zinc; lead; ATPase; P-type; resistance pump; CopA; CopB; ZntA; MNK; WND; ArsA;
D O I
10.1016/S1095-6433(02)00201-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae. (C) 2002 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:689 / 693
页数:5
相关论文
共 44 条
[1]   Evolution of substrate specificities in the P-type ATPase superfamily [J].
Axelsen, KB ;
Palmgren, MG .
JOURNAL OF MOLECULAR EVOLUTION, 1998, 46 (01) :84-101
[2]   Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis [J].
Bayle, D ;
Wängler, S ;
Weitzenegger, T ;
Steinhilber, W ;
Volz, J ;
Przybylski, M ;
Schäfer, KP ;
Sachs, G ;
Melchers, K .
JOURNAL OF BACTERIOLOGY, 1998, 180 (02) :317-329
[3]   Zinc(II) tolerance in Escherichia coli K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase [J].
Beard, SJ ;
Hashim, R ;
MembrilloHernandez, J ;
Hughes, MN ;
Poole, RK .
MOLECULAR MICROBIOLOGY, 1997, 25 (05) :883-891
[4]   Spatial proximity of Cys(113), Cys(172), and Cys(422) in the metalloactivation domain of the ArsA ATPase [J].
Bhattacharjee, H ;
Rosen, BP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (40) :24465-24470
[5]   ROLE OF CYSTEINYL RESIDUES IN METALLOACTIVATION OF THE OXYANION-TRANSLOCATING ARSA ATPASE [J].
BHATTACHARJEE, H ;
LI, JX ;
KSENZENKO, MY ;
ROSEN, BP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (19) :11245-11250
[6]  
Bobrowicz P, 1997, YEAST, V13, P819, DOI 10.1002/(SICI)1097-0061(199707)13:9<819::AID-YEA142>3.0.CO
[7]  
2-Y
[8]   Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34 [J].
Borremans, B ;
Hobman, JL ;
Provoost, A ;
Brown, NL ;
Van der Lelie, D .
JOURNAL OF BACTERIOLOGY, 2001, 183 (19) :5651-5658
[9]   THE WILSON DISEASE GENE IS A PUTATIVE COPPER TRANSPORTING P-TYPE ATPASE SIMILAR TO THE MENKES GENE [J].
BULL, PC ;
THOMAS, GR ;
ROMMENS, JM ;
FORBES, JR ;
COX, DW .
NATURE GENETICS, 1993, 5 (04) :327-337
[10]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293