Biological reactions of peroxynitrite: Evidence for an alternative pathway of salicylate hydroxylation

被引:24
作者
Narayan, M
Berliner, LJ
Merola, AJ
Diaz, PT
Clanton, TL
机构
[1] OHIO STATE UNIV,DIV PULM & CRIT CARE,COLUMBUS,OH 43210
[2] OHIO STATE UNIV,DEPT BIOCHEM MED,COLUMBUS,OH 43210
[3] OHIO STATE UNIV,DEPT CHEM,COLUMBUS,OH 43210
[4] OHIO STATE UNIV,BIOPHYS PROGRAM,COLUMBUS,OH 43210
关键词
2,5-dihydroxybenzoic acid; 2,3-dihydroxybenzoic acid; N-t-butyl-alpha-phenylnitrone; dimethyl sulfoxide; electron spin resonance;
D O I
10.3109/10715769709097839
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salicylate hydroxylation has often been used as an assay of hydroxyl radical production in vivo. We have examined here if hydroxylation of salicylate might also occur by its reaction with peroxynitrite. To test this hypothesis, we exposed salicylate to various concentrations of peroxynitrite, in vitro. We observed the hydroxylation of salicylate at 37 degrees C by peroxynitrite at pH 6, 7 and 7.5, where the primary products had similar retention times on HPLC to 2,3- and 2,5-dihydroxybenzoic acid. The product yields were pH dependent with maximal amounts formed at pH 6. Furthermore, the relative concentration of 2,3- to 2,5-dihydroxybenzoic acid increased with decreasing pH. Nitration of salicylate was also observed and both nitration, and hydroxylation reaction products were confirmed independently by mass spectrometry. The spin trap N-t-butyl-alpha-phenylnitrone (PEN), with or without dimethyl sulfoxide (DMSO), was incapable of trapping the peroxynitrite decomposition intermediates. Moreover, free radical adducts of the type PBN/(CH3)-C-. and PBN/(OH)-O-. were susceptible to destruction by peroxynitrite (pH 7, 0.1 M phosphate buffer). These results suggest direct peroxynitrite hydroxylation of salicylate and that the presence of hydroxyl radicals is not a prerequisite for hydroxylation reactions.
引用
收藏
页码:63 / 72
页数:10
相关论文
共 21 条
[1]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[2]   KINETICS OF SUPEROXIDE DISMUTASE-CATALYZED AND IRON-CATALYZED NITRATION OF PHENOLICS BY PEROXYNITRITE [J].
BECKMAN, JS ;
ISCHIROPOULOS, H ;
ZHU, L ;
VANDERWOERD, M ;
SMITH, C ;
CHEN, J ;
HARRISON, J ;
MARTIN, JC ;
TSAI, M .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1992, 298 (02) :438-445
[3]  
BRITIGAN BE, 1990, P NATL ACAD SCI USA, P2650
[4]   DIRECT EVIDENCE FOR INVIVO HYDROXYL-RADICAL GENERATION IN EXPERIMENTAL IRON OVERLOAD - AN ESR SPIN-TRAPPING INVESTIGATION [J].
BURKITT, MJ ;
MASON, RP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) :8440-8444
[5]   ON THE PH-DEPENDENT YIELD OF HYDROXYL RADICAL PRODUCTS FROM PEROXYNITRITE [J].
CROW, JP ;
SPRUELL, C ;
CHEN, J ;
GUNN, C ;
ISCHIROPOULOS, H ;
TSAI, M ;
SMITH, CD ;
RADI, R ;
KOPPENOL, WH ;
BECKMAN, JS .
FREE RADICAL BIOLOGY AND MEDICINE, 1994, 16 (03) :331-338
[6]  
DAVIS WB, 1989, BIOCHEM PHARMACOL, V38, P4013
[7]   HYDROXYLATION OF SALICYLATE BY THE IN-VITRO DIAPHRAGM - EVIDENCE FOR HYDROXYL RADICAL PRODUCTION DURING FATIGUE [J].
DIAZ, PT ;
SHE, ZW ;
DAVIS, WB ;
CLANTON, TL .
JOURNAL OF APPLIED PHYSIOLOGY, 1993, 75 (02) :540-545
[8]  
FLOYD R A, 1986, Journal of Free Radicals in Biology and Medicine, V2, P13, DOI 10.1016/0748-5514(86)90118-2
[9]   SENSITIVE ASSAY OF HYDROXYL FREE-RADICAL FORMATION UTILIZING HIGH-PRESSURE LIQUID-CHROMATOGRAPHY WITH ELECTROCHEMICAL DETECTION OF PHENOL AND SALICYLATE HYDROXYLATION PRODUCTS [J].
FLOYD, RA ;
WATSON, JJ ;
WONG, PK .
JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 1984, 10 (3-4) :221-235
[10]  
KADIISKA MB, 1992, MOL PHARMACOL, V42, P723