The genetics and genomics of the drought response in Populus

被引:184
作者
Street, Nathaniel Robert
Skogstrom, Oskar
Sjodin, Andreas
Tucker, James
Rodriguez-Acosta, Maricela
Nilsson, Peter
Jansson, Stefan [1 ]
Taylor, Gail
机构
[1] Umea Univ, Umea Plant Sci Ctr, SE-90187 Umea, Sweden
[2] Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England
[3] AlbaNova Univ Ctr, KTH, Royal Inst Technol, Dept Biotechnol, SE-10691 Stockholm, Sweden
基金
英国自然环境研究理事会;
关键词
poplar; microarray; QTL; transcriptome; drought;
D O I
10.1111/j.1365-313X.2006.02864.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F-2) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F-2 population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.
引用
收藏
页码:321 / 341
页数:21
相关论文
共 76 条
[1]   Integration of plant responses to environmentally activated phytohormonal signals [J].
Achard, P ;
Cheng, H ;
De Grauwe, L ;
Decat, J ;
Schoutteten, H ;
Moritz, T ;
Van Der Straeten, D ;
Peng, JR ;
Harberd, NP .
SCIENCE, 2006, 311 (5757) :91-94
[2]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[3]   Drought stress and recovery of riparian cottonwoods due to water table alteration along Willow Creek, Alberta [J].
Amlin, NM ;
Rood, SB .
TREES-STRUCTURE AND FUNCTION, 2003, 17 (04) :351-358
[4]   A transcriptional timetable of autumn senescence -: art. no. R24 [J].
Andersson, A ;
Keskitalo, J ;
Sjödin, A ;
Bhalerao, R ;
Sterky, F ;
Wissel, K ;
Tandre, K ;
Aspeborg, H ;
Moyle, R ;
Ohmiya, Y ;
Bhalerao, R ;
Brunner, A ;
Gustafsson, P ;
Karlsson, J ;
Lundeberg, J ;
Nilsson, O ;
Sandberg, G ;
Strauss, S ;
Sundberg, B ;
Uhlen, M ;
Jansson, S ;
Nilsson, P .
GENOME BIOLOGY, 2004, 5 (04)
[5]  
[Anonymous], 2001, Climate Change 2001:Impacts, Adaptation and Vulnerability
[6]   Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits [J].
Baxter, CJ ;
Sabar, M ;
Quick, WP ;
Sweetlove, LJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (416) :1591-1604
[7]   Gene expression in autumn leaves [J].
Bhalerao, R ;
Keskitalo, J ;
Sterky, F ;
Erlandsson, R ;
Björkbacka, H ;
Birve, SJ ;
Karlsson, J ;
Gardeström, P ;
Gustafsson, P ;
Lundeberg, J ;
Jansson, S .
PLANT PHYSIOLOGY, 2003, 131 (02) :430-442
[8]   Large-scale identification of single-feature polymorphisms in complex genomes [J].
Borevitz, JO ;
Liang, D ;
Plouffe, D ;
Chang, HS ;
Zhu, T ;
Weigel, D ;
Berry, CC ;
Winzeler, E ;
Chory, J .
GENOME RESEARCH, 2003, 13 (03) :513-523
[9]  
Borevitz JO, 2002, GENETICS, V160, P683
[10]   PLANT PRODUCTIVITY AND ENVIRONMENT [J].
BOYER, JS .
SCIENCE, 1982, 218 (4571) :443-448