New tool in the box

被引:71
作者
Zdeborova, Lenka [1 ]
机构
[1] Univ Paris Saclay, CEA, CNRS, Inst Phys Theor, F-91191 Gif Sur Yvette, France
关键词
D O I
10.1038/nphys4053
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A recent burst of activity in applying machine learning to tackle fundamental questions in physics suggests that associated techniques may soon become as common in physics as numerical simulations or calculus.
引用
收藏
页码:420 / 421
页数:2
相关论文
共 9 条
  • [1] [Anonymous], 2017, NAT PHYS
  • [2] [Anonymous], 2015, PREPRINT
  • [3] Arsenault L.-F., 2015, PREPRINT
  • [4] Carleo G., 2016, PREPRINT
  • [5] Carrasquilla J., 2017, NAT PHYS
  • [6] Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
    Hansen, Katja
    Montavon, Gregoire
    Biegler, Franziska
    Fazli, Siamac
    Rupp, Matthias
    Scheffler, Matthias
    von Lilienfeld, O. Anatole
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3404 - 3419
  • [7] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [8] Schoenholz SS, 2016, NAT PHYS, V12, P469, DOI [10.1038/NPHYS3644, 10.1038/nphys3644]
  • [9] Mastering the game of Go with deep neural networks and tree search
    Silver, David
    Huang, Aja
    Maddison, Chris J.
    Guez, Arthur
    Sifre, Laurent
    van den Driessche, George
    Schrittwieser, Julian
    Antonoglou, Ioannis
    Panneershelvam, Veda
    Lanctot, Marc
    Dieleman, Sander
    Grewe, Dominik
    Nham, John
    Kalchbrenner, Nal
    Sutskever, Ilya
    Lillicrap, Timothy
    Leach, Madeleine
    Kavukcuoglu, Koray
    Graepel, Thore
    Hassabis, Demis
    [J]. NATURE, 2016, 529 (7587) : 484 - +