Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response

被引:216
作者
Romeis, T [1 ]
Piedras, P [1 ]
Jones, JDG [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
关键词
D O I
10.1105/tpc.12.5.803
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the Cf-9/Avr9 gene-for-gene interaction, the Cf-9 resistance gene from tomato confers resistance to the fungal pathogen Cladosporium fulvum, which expresses the corresponding pathogen-derived avirulence product Avr9. To understand R gene function and dissect the signaling mechanisms involved in the induction of plant defenses, we studied Cf-9/Avr9-dependent activation of protein kinases in transgenic Cf9 tobacco cell cultures. Using a modified in-get kinase assay with histone as substrate, we identified a membrane-bound, calcium-dependent protein kinase (CDPK) that showed a shift in electrophoretic mobility from 68 to 70 kD within 5 min after Avr9 elicitor was added. This transition from the nonelicited to the elicited CDPK form was caused by a phosphorylation event and was verified when antibodies to CDPK were used for protein gel blot analysis. In addition, the interconversion of the corresponding CDPK forms could be induced in vitro in both directions by treatment with either phosphatase or ATP. In vitro protein kinase activity toward syntide-2 or histone with membrane extracts or gel-purified enzyme was dependent on Ca2+ content and was compromised by the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) but not by its inactive isoform N-(6-aminohexyl)-1-naphthalenesulfonamide In these assays, the CDPK activity in elicited samples, reflecting predominantly the phosphorylated 70-kD CDPK form, was greater than in nonelicited samples. Thus, Avr9/Cf-9-dependent phosphorylation and subsequent transition from the nonelicited to the elicited form correlate with the activation of a CDPK isoform after in vivo stimulation. Because that transition was not inhibited by W-7, the in vivo CDPK activation probably is not the result of autophosphorylation. Studies with pharmacological inhibitors indicated that the identified CDPK is independent of or is located upstream from a signaling pathway that is required for the Avr9-induced active oxygen species.
引用
收藏
页码:803 / 815
页数:13
相关论文
共 71 条
[1]   K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction [J].
Blatt, MR ;
Grabov, A ;
Brearley, J ;
Hammond-Kosack, K ;
Jones, JDG .
PLANT JOURNAL, 1999, 19 (04) :453-462
[2]   Early signal transduction pathways in plant-pathogen interactions [J].
Blumwald, E ;
Aharon, GS ;
Lam, BCH .
TRENDS IN PLANT SCIENCE, 1998, 3 (09) :342-346
[3]   CA-2+-DEPENDENT PROTEIN-KINASE FROM ALFALFA (MEDICAGO-VARIA) - PARTIAL-PURIFICATION AND AUTOPHOSPHORYLATION [J].
BOGRE, L ;
OLAH, Z ;
DUDITS, D .
PLANT SCIENCE, 1988, 58 (02) :135-144
[4]   Role of active oxygen species and NO in plant defence responses [J].
Bolwell, GP .
CURRENT OPINION IN PLANT BIOLOGY, 1999, 2 (04) :287-294
[5]   14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK) [J].
Camoni, L ;
Harper, JF ;
Palmgren, MG .
FEBS LETTERS, 1998, 430 (03) :381-384
[6]   The plasma membrane H+-ATPase from maize roots is phosphorylated in the C-terminal domain by a calcium-dependent protein kinase [J].
Camoni, L ;
Fullone, MR ;
Marra, M ;
Aducci, P .
PHYSIOLOGIA PLANTARUM, 1998, 104 (04) :549-555
[7]   Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells [J].
Chandra, S ;
Low, PS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (45) :28274-28280
[8]   The 14-3-3 proteins: cellular regulators of plant metabolism [J].
Chung, HJ ;
Sehnke, PC ;
Ferl, RJ .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :367-371
[9]  
DESPRES C, 1995, PLANT CELL, V7, P589, DOI 10.1105/tpc.7.5.589
[10]   Pathogen avirulence and plant resistance: a key role for recognition [J].
DeWit, PJGM .
TRENDS IN PLANT SCIENCE, 1997, 2 (12) :452-458