A mixture model for multivariate extremes

被引:63
作者
Boldi, M. -O. [1 ]
Davison, A. C. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, CH-1015 Lausanne, Switzerland
关键词
adequacy; air pollution data; Dirichlet distribution; EM algorithm; multivariate extreme values; oceanographic data; reversible jump Markov chain Monte Carlo simulation; spectral distribution;
D O I
10.1111/j.1467-9868.2007.00585.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The spectral density function plays a key role in fitting the tail of multivariate extre-mal data and so in estimating probabilities of rare events. This function satisfies moment con-straints but unlike the univariate extreme value distributions has no simple parametric form. Parameterized subfamilies of spectral densities have been suggested for use in applications, and non-parametric estimation procedures have been proposed, but semiparametric models for multivariate extremes have hitherto received little attention. We show that mixtures of Dirichlet distributions satisfying the moment constraints are weakly dense in the class of all non-parametric spectral densities, and discuss frequentist and Bayesian inference in this class based on the EM algorithm and reversible jump Markov chain Monte Carlo simulation. We illustrate the ideas using simulated and real data.
引用
收藏
页码:217 / 229
页数:13
相关论文
共 15 条
[1]  
[Anonymous], P STAT COMP SECT AM
[2]   Convergence assessment techniques for Markov chain Monte Carlo [J].
Brooks, SP ;
Roberts, GO .
STATISTICS AND COMPUTING, 1998, 8 (04) :319-335
[3]   Markov chain Monte Carlo convergence assessment via two-way analysis of variance [J].
Brooks, SP ;
Giudici, P .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) :266-285
[4]  
Coles S., 1994, APPL STAT-J ROY ST C, V43, P1
[5]  
Dalal S.R., 1978, SANKHYA, V40, P185
[6]   ON APPROXIMATING PARAMETRIC BAYES MODELS BY NONPARAMETRIC BAYES MODELS [J].
DALAL, SR ;
HALL, GJ .
ANNALS OF STATISTICS, 1980, 8 (03) :664-672
[7]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[8]  
Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.2307/2337340
[9]   A conditional approach for multivariate extreme values [J].
Heffernan, JE ;
Tawn, JA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 :497-530
[10]  
HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663