Molecular interactions between the plasminogen/plasmin and matrix metalloproteinase systems

被引:44
作者
Lijnen, HR [1 ]
机构
[1] Univ Louvain, Ctr Mol & Vasc Biol, B-3000 Louvain, Belgium
来源
FIBRINOLYSIS & PROTEOLYSIS | 2000年 / 14卷 / 2-3期
关键词
D O I
10.1054/fipr.2000.0065
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circumstantial evidence suggests an important role of the fibrinolytic (plasminogen/plasmin) and matrix metalloproteinase (MMP) systems in biological processes involving (extra)cellular proteolysis and matrix degradation. The availability of mice with inactivation of main components of both systems has allowed to study directly the interactions between both systems and their biological role. In purified system, MMP-9 (stromelysin-1) specifically hydrolyzes plasminogen and urokinase-type plasminogen activator (u-PA), thereby removing the cellular binding domains from both proteins. In the presence of cells, MMP-3 may downregulate cell-associated plasmin activity by decreasing the amount of activatible plasminogen, without affecting cell-bound u-PA activity. During neointima formation after vascular injury in gene-deficient mice, expression of MMP-2 and MMP-9 (gelatinase A and B) is strongly enhanced, independently of the presence or absence of plasminogen or of the physiological plasminogen activators. Activation of proMMP-2 occurs independently of plasmin, whereas proMMP-9 activation occurs via plasmin-dependent as well as plasmin-independent mechanisms. The temporal and topographic expression patterns of MMP-2, MMP-3, MMP-9, MMP-12 (metalloelastase) and MMP-13 (collagenase) establish a potential role in neointima formation. This is further substantiated by the finding that neointima formation after vascular injury is significantly enhanced in mice with deficiency of TIMP-1, a main physiological MMP inhibitor. Atherosclerosis models in gene-deficient mice suggest an important role of u-PA in the structural integrity of the atherosclerotic vessel wall. u-PA-mediated plasmin generation may contribute to activation of latent MMPs (MMP-3, -9, -12, and -13) which degrade insoluble elastin and fibrillar collagen. Thus, studies with gene-deficient mice have allowed to establish novel interactions between the fibrinolytic and MMP systems, which may play a role in biological processes requiring cellular proteolytic activity and/or extracellular matrix degradation. (C) 2000 Harcourt Publishers Ltd.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 65 条
[1]   Local overexpression of TIMP-1 prevents aortic aneurysm degeneration and rupture in a rat model [J].
Allaire, E ;
Forough, R ;
Clowes, W ;
Starcher, B ;
Clowes, AW .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 102 (07) :1413-1420
[2]   Immunolocalization of matrix metalloproteinases in rabbit carotid arteries after balloon denudation [J].
Aoyagi, M ;
Yamamoto, M ;
Azuma, H ;
Nagashima, G ;
Niimi, Y ;
Tamaki, M ;
Hirakawa, K ;
Yamamoto, K .
HISTOCHEMISTRY AND CELL BIOLOGY, 1998, 109 (02) :97-102
[3]   Involvement of PA/plasmin system in the processing of pro-MMP-9 and in the second step of pro-MMP-2 activation [J].
Baramova, EN ;
Bajou, K ;
Remacle, A ;
LHoir, C ;
Krell, HW ;
Weidle, UH ;
Noel, A ;
Foidart, JM .
FEBS LETTERS, 1997, 405 (02) :157-162
[4]   SMOOTH-MUSCLE CELL-MIGRATION AND MATRIX METALLOPROTEINASE EXPRESSION AFTER ARTERIAL INJURY IN THE RAT [J].
BENDECK, MP ;
ZEMPO, N ;
CLOWES, AW ;
GALARDY, RE ;
REIDY, MA .
CIRCULATION RESEARCH, 1994, 75 (03) :539-545
[5]   Kringle domains of human angiostatin - Characterization of the anti-proliferative activity on endothelial cells [J].
Cao, YH ;
Ji, RW ;
Davidson, D ;
Schaller, J ;
Marti, D ;
Sohndel, S ;
McCance, SG ;
OReilly, MS ;
Llinas, M ;
Folkman, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (46) :29461-29467
[6]  
Carmeliet P, 1997, AM J PATHOL, V150, P761
[7]   Development and disease in proteinase-deficient mice: Role of the plasminogen, matrix metalloproteinase and coagulation system [J].
Carmeliet, P ;
Collen, D .
THROMBOSIS RESEARCH, 1998, 91 (06) :255-285
[8]  
Carmeliet P, 1997, CIRC RES, V81, P829
[9]   Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation [J].
Carmeliet, P ;
Moons, L ;
Lijnen, HR ;
Baes, M ;
Lemaitre, V ;
Tipping, P ;
Drew, A ;
Eeckhout, Y ;
Shapiro, S ;
Lupu, F ;
Collen, D .
NATURE GENETICS, 1997, 17 (04) :439-444
[10]   Impaired arterial neointima formation in mice with disruption of the plasminogen gene [J].
Carmeliet, P ;
Moons, L ;
Ploplis, V ;
Plow, E ;
Collen, D .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (02) :200-208