Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

被引:29
作者
Giesen, AW
Homans, SW [1 ]
Brown, JM
机构
[1] Univ Leeds, Sch Biochem & Mol Biol, Astbury Ctr Struct Mol Biol, Leeds LS2 9JT, W Yorkshire, England
[2] ProSpect Pharma, Columbia, MD 21045 USA
基金
英国生物技术与生命科学研究理事会;
关键词
global fold; NMR; residual dipolar couplings; ubiquitin;
D O I
10.1023/A:1021954812977
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N-i-H-i(N), N-i-Ci-1' H-i(N)-Ci-1') in two tensor frames and only backbone H-N-H-N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 Angstrom with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
[1]   Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings [J].
Al-Hashimi, HM ;
Valafar, H ;
Terrell, M ;
Zartler, ER ;
Eidsness, MK ;
Prestegard, JH .
JOURNAL OF MAGNETIC RESONANCE, 2000, 143 (02) :402-406
[2]   Protein backbone structure determination using only residual dipolar couplings from one ordering medium [J].
Andrec, M ;
Du, PC ;
Levy, RM .
JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (04) :335-347
[3]   High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium [J].
Bax, A ;
Tjandra, N .
JOURNAL OF BIOMOLECULAR NMR, 1997, 10 (03) :289-292
[4]   Protein phi and psi dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures [J].
Beger, RD ;
Bolton, PH .
JOURNAL OF BIOMOLECULAR NMR, 1997, 10 (02) :129-142
[5]   Rapid protein fold determination using secondary chemical shifts and cross-hydrogen bond 15N-13C′ scalar couplings (3hbJNC′) [J].
Bonvin, AMJJ ;
Houben, K ;
Guenneugues, M ;
Kaptein, R ;
Boelens, R .
JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (03) :221-233
[6]   De novo protein structure determination using sparse NMR data [J].
Bowers, PM ;
Strauss, CEM ;
Baker, D .
JOURNAL OF BIOMOLECULAR NMR, 2000, 18 (04) :311-318
[7]  
BRUNGER AT, 1987, XPLOR VERSION 3 1 SY
[8]   A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information [J].
Clore, GM ;
Gronenborn, AM ;
Bax, A .
JOURNAL OF MAGNETIC RESONANCE, 1998, 133 (01) :216-221
[9]   Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude [J].
Clore, GM ;
Gronenborn, AM ;
Tjandra, N .
JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) :159-162
[10]   R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures [J].
Clore, GM ;
Garrett, DS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (39) :9008-9012