Sucrose gap recordings from the dorsal roots of isolated, hemisected frog spinal cords were used to determine the effects of metabotropic L-glutamate receptor activation on primary afferent terminals by (+/-)-1-amino-trans-1,3-cyclopentane-dicarboxylic acid (t-ACPD). Dorsal root potentials evoked by ventral root volleys were significantly reduced by t-ACPD (30 mu M), as were GABA- and muscimol-induced afferent terminal depolarizations. The effects of t-ACPD on GABA-depolarizations depended upon activation of group I metabotropic glutamate receptors, i.e. the effects were blocked by the group I/II antagonist (RS)-alpha-methyl-4-carboxyphenylglycine, but not by the group II antagonist alpha-methyl-(2S, 3S,4S)-alpha-(carboxycyclopropyl)-glycine or the group III antagonist alpha-methyl-(S)-2-amino-4-phosphonobutyrate and were mimicked by the group I agonist 3,5-dihydroxyphenylglycine but were not mimicked by the group III agonist (S)-2-amino-4-phosphonobutyrate. Increasing the intracellular concentration of 3',5'-cyclic adenosine monophosphate with 8-bromo-cAMP, forskolin, and 3-isobutyl-1-methylxanthine significantly reduced GABA depolarizations, but the protein kinase inhibitors Rp-adenosine 3,5-cyclic monophosphothioate triethylamine and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinoline did not alter t-ACPD's depression of GABA depolarizations. The actions of t-ACPD on GABA depolarizations were neither mimicked nor blocked by phorbol-12-myristate 13-acetate, thapsigargin, staurosporine, or arachidonic acid, presumptive indications that the effects of t-ACPD did not involve phosphoinositide hydrolysis, the release of Ca2+ from intracellular stores, or the formation of arachidonate, t-ACPD's effects on GABA depolarizations were blocked by 20 mM Mg2+, the broad spectrum L-glutamate antagonist kynurenate, and the selective N-methyl-D-aspartate antagonist D(-)-2-amino-5-phosphonovaleric acid, but not by the non-N-methyl-D-aspartate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. Low concentrations of N-methyl-D-aspartate (10 mu M) mimicked the effect of t-ACPD on GABA responses. These results suggest that t-ACPD's depression of GABA depolarizations involves an indirect, three-stage mechanism that includes activation of Group I metabotropic glutamate receptors on interneurons and/or on afferent terminals, the release of L-glutamate from the latter structures, and the activation of N-methyl-D-aspartate receptors on primary afferent terminals. The depression of GABA depolarizations caused by the release of L-glutamate from afferent terminal and/or interneurons leads to a block of presynaptic inhibition (produced in the frog spinal cord by GABA) resulting in a positive feed-forward amplification of reflex transmission. (C) 1997 IBRO. Published by Elsevier Science Ltd.