Dielectric resonator nanoantennas at visible frequencies

被引:175
作者
Zou, Longfang [1 ]
Withayachumnankul, Withawat [1 ]
Shah, Charan M. [2 ]
Mitchell, Arnan [2 ,3 ]
Bhaskaran, Madhu [2 ]
Sriram, Sharath [2 ]
Fumeaux, Christophe [1 ]
机构
[1] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[2] RMIT Univ, Sch Elect & Comp Engn, Funct Mat & Microsyst Res Grp, Melbourne, Vic 3001, Australia
[3] RMIT Univ, Sch Elect & Comp Engn, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Melbourne, Vic 3001, Australia
来源
OPTICS EXPRESS | 2013年 / 21卷 / 01期
基金
澳大利亚研究理事会;
关键词
ANTENNAS; LIGHT;
D O I
10.1364/OE.21.001344
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Drawing inspiration from radio-frequency technologies, we propose a realization of nano-scale optical dielectric resonator antennas (DRAs) functioning in their fundamental mode. These DRAs operate via displacement current in a low-loss high-permittivity dielectric, resulting in reduced energy dissipation in the resonators. The designed nonuniform planar DRA array on a metallic plane imparts a sequence of phase shifts across the wavefront to create beam deflection off the direction of specular reflection. The realized array clearly demonstrates beam deflection at 633 nm. Despite the loss introduced by field interaction with the metal substrate, the proposed low-loss resonator concept is a first step towards nanoantennas with enhanced efficiency. The compact planar structure and technologically relevant materials promise monolithic circuit integration of DRAs. (C) 2013 Optical Society of America
引用
收藏
页码:1344 / 1352
页数:9
相关论文
共 32 条
[1]   Hertzian plasmonic nanodimer as an efficient optical nanoantenna [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW B, 2008, 78 (19)
[2]  
Balanis C. A., 2011, MODERN ANTENNA HDB
[3]   Nano-plasmonic antennas in the near infrared regime [J].
Berkovitch, N. ;
Ginzburg, P. ;
Orenstein, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (07)
[4]   Optical Antennas [J].
Bharadwaj, Palash ;
Deutsch, Bradley ;
Novotny, Lukas .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (03) :438-483
[5]   Plasmonics - Engineering optical nanoantennas [J].
Brongersma, Mark L. .
NATURE PHOTONICS, 2008, 2 (05) :270-272
[6]   Optical frequency mixing at coupled gold nanoparticles [J].
Danckwerts, Matthias ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2007, 98 (02)
[7]   3D optical Yagi-Uda nanoantenna array [J].
Dregely, Daniel ;
Taubert, Richard ;
Dorfmueller, Jens ;
Vogelgesang, Ralf ;
Kern, Klaus ;
Giessen, Harald .
NATURE COMMUNICATIONS, 2011, 2
[8]   Lithographic antennas at visible frequencies [J].
Fumeaux, C ;
Alda, J ;
Boreman, GD .
OPTICS LETTERS, 1999, 24 (22) :1629-1631
[9]   Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation [J].
Fumeaux, C ;
Herrmann, W ;
Kneubuhl, FK ;
Rothuizen, H .
INFRARED PHYSICS & TECHNOLOGY, 1998, 39 (03) :123-183
[10]   Planar infrared binary phase reflectarray [J].
Ginn, James ;
Lail, Brian ;
Alda, Javier ;
Boreman, Glenn .
OPTICS LETTERS, 2008, 33 (08) :779-781