Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers

被引:303
作者
Box, J. E. [1 ,2 ]
Fettweis, X. [3 ]
Stroeve, J. C. [4 ,5 ]
Tedesco, M. [6 ]
Hall, D. K. [7 ]
Steffen, K. [5 ]
机构
[1] Ohio State Univ, Dept Geog, Columbus, OH 43210 USA
[2] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[3] Univ Liege, Dept Geog, B-4000 Liege, Belgium
[4] Natl Snow & Ice Data Ctr, Boulder, CO USA
[5] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[6] CUNY, New York, NY 10021 USA
[7] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
关键词
SURFACE MASS-BALANCE; REGIONAL CLIMATE MODEL; WEST GREENLAND; ENERGY-BALANCE; ABLATION ZONE; DATA SET; SNOW; MELT; MODIS; VALIDATION;
D O I
10.5194/tc-6-821-2012
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Greenland ice sheet mass loss has accelerated in the past decade responding to combined glacier discharge and surface melt water runoff increases. During summer, absorbed solar energy, modulated at the surface primarily by albedo, is the dominant factor governing surface melt variability in the ablation area. Using satellite-derived surface albedo with calibrated regional climate modeled surface air temperature and surface downward solar irradiance, we determine the spatial dependence and quantitative impact of the ice sheet albedo feedback over 12 summer periods beginning in 2000. We find that, while albedo feedback defined by the change in net solar shortwave flux and temperature over time is positive over 97% of the ice sheet, when defined using paired annual anomalies, a second-order negative feedback is evident over 63% of the accumulation area. This negative feedback damps the accumulation area response to warming due to a positive correlation between snowfall and surface air temperature anomalies. Positive anomaly-gauged feedback concentrated in the ablation area accounts for more than half of the overall increase in melting when satellite-derived melt duration is used to define the timing when net shortwave flux is sunk into melting. Abnormally strong anticyclonic circulation, associated with a persistent summer North Atlantic Oscillation extreme since 2007, enabled three amplifying mechanisms to maximize the albedo feedback: (1) increased warm (south) air advection along the western ice sheet increased surface sensible heating that in turn enhanced snow grain metamorphic rates, further reducing albedo; (2) increased surface downward shortwave flux, leading to more surface heating and further albedo reduction; and (3) reduced snowfall rates sustained low albedo, maximizing surface solar heating, progressively lowering albedo over multiple years. The summer net infrared and solar radiation for the high elevation accumulation area approached positive values during this period. Thus, it is reasonable to expect 100% melt area over the ice sheet within another similar decade of warming.
引用
收藏
页码:821 / 839
页数:19
相关论文
共 61 条
[1]   Greenland ice sheet melt extent: 1979-1999 [J].
Abdalati, W ;
Steffen, K .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D24) :33983-33988
[2]  
[Anonymous], 2010, PHYS GLACIERS, DOI DOI 10.3189/002214311796405906
[3]   A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors [J].
Bamber, JL ;
Layberry, RL ;
Gogineni, S .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D24) :33773-33780
[4]   The ablation zone in northeast Greenland: ice types, albedos and impurities [J].
Boggild, Carl Egede ;
Brandt, Richard E. ;
Brown, Kendrick J. ;
Warren, Stephen G. .
JOURNAL OF GLACIOLOGY, 2010, 56 (195) :101-113
[5]  
Box J., 1997, THESIS U COLORADO BO
[6]   Greenland ice sheet surface mass balance variability (1988-2004) from calibrated polar MM5 output [J].
Box, Jason E. ;
Bromwich, David H. ;
Veenhuis, Bruce A. ;
Bai, Le-Sheng ;
Stroeve, Julienne C. ;
Rogers, Jeffrey C. ;
Steffen, Konrad ;
Haran, T. ;
Wang, Sheng-Hung .
JOURNAL OF CLIMATE, 2006, 19 (12) :2783-2800
[7]  
Chang A.T. C., 1976, J GLACIOL, V16, P23, DOI [10.1017/S0022143000031415, DOI 10.1017/S0022143000031415]
[8]   Interannual variability of Greenland ice losses from satellite gravimetry [J].
Chen, J. L. ;
Wilson, C. R. ;
Tapley, B. D. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2011, 116
[9]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[10]   EFFECT OF GRAIN-SIZE AND SNOWPACK WATER EQUIVALENCE ON VISIBLE AND NEAR-INFRARED SATELLITE-OBSERVATIONS OF SNOW [J].
DOZIER, J ;
SCHNEIDER, SR ;
MCGINNIS, DF .
WATER RESOURCES RESEARCH, 1981, 17 (04) :1213-1221