Importance of entropy in the conformational equilibrium of phenylalanine: A matrix-isolation infrared spectroscopy and density functional theory study

被引:83
作者
Kaczor, A [1 ]
Reva, ID
Proniewicz, LM
Fausto, R
机构
[1] Univ Coimbra, Dept Chem, P-3004535 Coimbra, Portugal
[2] Jagiellonian Univ, Fac Chem, PL-30060 Krakow, Poland
[3] Jagiellonian Univ, Reg Lab Physicochem Anal & Struct Res, PL-30060 Krakow, Poland
关键词
D O I
10.1021/jp0550715
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The conformational behavior and infrared spectrum Of L-phenylalanine were studied by matrix-isolation infrared spectroscopy and DFT [B3LYP/6-311++G(d,p)] calculations. The fourteen most stable structures were predicted to differ in energy by less than 10 kJ mol(-1), eight of them with abundances higher than 5% at the temperature of evaporation of the compound (423 K). Experimental results suggest that six conformers contribute to the spectrum of the isolated compound, whereas two conformers (IIb(3) and IIIb(3)) relax in matrix to a more stable form (IIb(2)) due to low energy barriers for conformational isomerization (conformational cooling). The two lowest-energy conformers (Ib(1), la) differ only in the arrangement of the amino acid group relative to the phenyl ring; they exhibit a relatively strong stabilizing intramolecular hydrogen bond of the O-(HN)-N-... type and the carboxylic group in the trans configuration (O=C-O-H dihedral angle ca. 180 degrees). Type 11 conformers have a weaker H-bond of the N-(HO)-O-...=C type, but they bear the more favorable cis arrangement of the carboxylic group. Being considerably more flexible, type 11 conformers are stabilized by entropy and the relative abundances of two conformers of this type (IIb2 and IIc(1)) are shown to significantly increase with temperature due to entropic stabilization. At 423 K, these conformers are found to be the first and third most abundant species present in the conformational equilibrium, with relative populations of ca. 15% each, whereas their populations could be expected to be only ca. 5% if entropy effects were not taken into consideration. Indeed, phenylalanine can be considered a notable example of a molecule where entropy plays an essential role in determining the relative abundance of the possible low-energy conformational states and then, the thermodynamics of the compound, even at moderate temperatures. Upon UV irradiation (lambda > 235 nm) of the matrix-isolated compound, unimolecular photodecomposition of phenylalanine is observed with production Of CO2 and phenethylamine.
引用
收藏
页码:2360 / 2370
页数:11
相关论文
共 54 条
[1]   HYDROGEN-BOND STUDIES .77. ELECTRON-DENSITY DISTRIBUTION IN ALPHA-GLYCINE - X-N DIFFERENCE FOURIER SYNTHESIS VS AB-INITIO CALCULATIONS [J].
ALMLOF, J ;
KVICK, A ;
THOMAS, JO .
JOURNAL OF CHEMICAL PHYSICS, 1973, 59 (08) :3901-3906
[2]   Matrix isolation FTIR and molecular orbital study of E and Z acetaldoxime monomers [J].
Andrzejewska, A ;
Lapinski, L ;
Reva, I ;
Fausto, R .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (14) :3289-3296
[3]   Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins [J].
Avbelj, F ;
Fele, L .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 279 (03) :665-684
[4]   Fingerprint IR spectroscopy to probe amino acid conformations in the gas phase [J].
Bakker, JM ;
Aleese, LM ;
Meijer, G ;
von Helden, G .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[5]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[6]   The gas-phase structure of alanine [J].
Blanco, S ;
Lesarri, A ;
López, JC ;
Alonso, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (37) :11675-11683
[7]   ANALYTICAL SPECTROSCOPY AND STRUCTURE OF BIOMOLECULES USING AN ABINITIO COMPUTATIONAL METHOD [J].
CHOI, Y ;
LUBMAN, DM .
ANALYTICAL CHEMISTRY, 1992, 64 (22) :2726-2734
[8]   Ab initio characterization of building units in peptides and proteins [J].
Csaszár, AG ;
Perczel, A .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 71 (02) :243-309
[9]   Thermodynamics of amino acid side-chain internal rotations [J].
Doig, AJ .
BIOPHYSICAL CHEMISTRY, 1996, 61 (2-3) :131-141
[10]   Data mining, ab initio, and molecular mechanics study on conformation of phenylalanine and its interaction with neighboring backbone amide groups in proteins [J].
Duan, GL ;
Smith, VH ;
Weaver, DF .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (02) :669-683