Bacterial and fungal contributions to carbon sequestration in agroecosystems

被引:1524
作者
Six, J [1 ]
Frey, SD
Thiet, RK
Batten, KM
机构
[1] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA
[2] Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA
关键词
D O I
10.2136/sssaj2004.0347
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This paper reviews the current knowledge of microbial processes affecting C sequestration in agroecosystems. The microbial contribution to soil C storage is directly related to microbial community dynamics and the balance between formation and degradation of microbial byproducts. Soil microbes also indirectly influence C cycling by improving soil aggregation, which physically protects soil organic matter (SOM). Consequently, the microbial contribution to C sequestration is governed by the interactions between the amount of microbial biomass, microbial community structure, microbial byproducts, and soil properties such as texture, clay mineralogy, pore-size distribution, and aggregate dynamics. The capacity of a soil to protect microbial biomass and microbially derived organic matter (MOM) is directly and/or indirectly (i.e., through physical protection by aggregates) related to the reactive properties of clays. However, the stabilization of MOM in the soil is also related to the efficiency with which microorganisms utilize substrate C and the chemical nature of the byproducts they produce. Crop rotations, reduced or no-tillage practices, organic farming, and cover crops increase total microbial biomass and shift the community structure toward a more fungal-dominated community, thereby enhancing the accumulation of MOM. A quantitative and qualitative improvement of SOM is generally observed in agroecosystems favoring a fungal-dominated community, but the mechanisms leading to this improvement are not completely understood. Gaps within our knowledge on MOM-C dynamics and how they are related to soil properties and agricultural practices are identified.
引用
收藏
页码:555 / 569
页数:15
相关论文
共 197 条
[1]   Enzyme activities and microbial community structure in semiarid agricultural soils [J].
Acosta-Martínez, V ;
Zobeck, TM ;
Gill, TE ;
Kennedy, AC .
BIOLOGY AND FERTILITY OF SOILS, 2003, 38 (04) :216-227
[2]   UTILIZATION OF ORGANIC MATERIALS IN SOIL AGGREGATES BY BACTERIA AND FUNGI [J].
ADU, JK ;
OADES, JM .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (02) :117-122
[3]   PHYSICAL FACTORS INFLUENCING DECOMPOSITION OF ORGANIC MATERIALS IN SOIL AGGREGATES [J].
ADU, JK ;
OADES, JM .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (02) :109-115
[4]  
Alexander M., 1977, Introduction to soil microbiology.
[5]   Changes in soil microbial community structure in a tallgrass prairie chronosequence [J].
Allison, VJ ;
Miller, RM ;
Jastrow, JD ;
Matamala, R ;
Zak, DR .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2005, 69 (05) :1412-1421
[6]   DECOMPOSITION OF C-14-LABELED GLUCOSE AND LEGUME MATERIAL IN SOILS - PROPERTIES INFLUENCING THE ACCUMULATION OF ORGANIC RESIDUE-C AND MICROBIAL BIOMASS-C [J].
AMATO, M ;
LADD, JN .
SOIL BIOLOGY & BIOCHEMISTRY, 1992, 24 (05) :455-464
[7]   Lignin in particle-size fractions of native grassland soils as influenced by climate [J].
Amelung, W ;
Flach, KW ;
Zech, W .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (05) :1222-1228
[8]   Neutral and acidic sugars in particle-size fractions as influenced by climate [J].
Amelung, W ;
Flach, KW ;
Zech, W .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (04) :865-873
[9]   Amino sugars in native grassland soils along a climosequence in North America [J].
Amelung, W ;
Zhang, X ;
Flach, KW ;
Zech, W .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1999, 63 (01) :86-92
[10]   THE INFLUENCE OF CROP-ROTATION AND SOIL FUMIGATION ON A MYCORRHIZAL FUNGAL COMMUNITY ASSOCIATED WITH SOYBEAN [J].
AN, ZQ ;
HENDRIX, JW ;
HERSHMAN, DE ;
FERRISS, RS ;
HENSON, GT .
MYCORRHIZA, 1993, 3 (04) :171-182