Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli:: Evidence that chaperone activity is the prime effect of thioredoxin

被引:73
作者
Jurado, P [1 ]
de Lorenzo, V [1 ]
Fernández, LA [1 ]
机构
[1] CSIC, Ctr Nacl Biotecnol, E-28049 Madrid, Spain
关键词
disulfide-bonds; E; coli; intrabodies; protein folding; recombinant antibodies;
D O I
10.1016/j.jmb.2005.12.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In this study we investigate the effect of thioredoxin (Trx1) protein fusions in the production, oxidation, and folding of single chain Fv (scFv) antibodies in the cytoplasm of Escherichia coli. We analyze the expression levels, solubility, disulfide-bond formation, and antigen-binding properties of Trx1-scFv fusions in E. coli wild-type cells and isogenic strains carrying mutations in the glutathione oxidoreductase (gor) and/or thioredoxin reductase (trxB) genes. We compare the Trx1-scFv fusions with other reported systems for production of scFv in the cytoplasm of E. coli, including protein fusions to the maltose-binding protein. In addition, we analyze the effect of co-expressing a signal-sequence-less derivative of the periplasmic chaperone and disulfide-bond isomerase DsbC (Delta ssDsbC), which has been shown to act as a chaperone for scFvs in the cytoplasm. The results reported here demonstrate that Trx1 fusions produce the highest expression level and induce the correct folding of scFvs even in the absence of Delta ssDsbC in the cytoplasm of E. coli trxB gor cells. The disulfide bridges of Trx1-scFv fusions were formed correctly in E. coli trxB gor cells, but not in trxB single mutants. Antigen-binding assays showed that Trx1 has only a minor influence in the affinity of the scFv, indicating that Trx1-scFv fusions can be used without removal of the Trx1 moiety In addition, we proved that a Trx1"AGPA" variant, having its catalytic cysteine residues mutated to alanine, was fully capable of assisting the folding of the fused scFvs. Taken together, our data indicate that the Trx1 moiety acts largely as an intramolecular protein chaperone, not as a disulfide bond catalyst, inducing the correct folding of scFvs in the cytoplasm of E. coli trxB gor cells. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 52 条
[1]  
ANDRISWIDHOPF J, 2001, PHAGE DISPLAY LAB MA
[2]   FAST AND SENSITIVE DETECTION OF PROTEIN AND DNA BANDS BY TREATMENT WITH POTASSIUM-PERMANGANATE [J].
ANSORGE, W .
JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS, 1985, 11 (01) :13-20
[3]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[4]   Escherichia coli maltose-binding protein as a molecular chaperone for recombinant intracellular cytoplasmic single-chain antibodies [J].
Bach, H ;
Mazor, Y ;
Shaky, S ;
Shoham-Lev, A ;
Berdichevsky, Y ;
Gutnick, DL ;
Benhar, I .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (01) :79-93
[5]   Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm [J].
Bessette, PH ;
Åslund, F ;
Beckwith, J ;
Georgiou, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (24) :13703-13708
[6]   In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG [J].
Bessette, PH ;
Cotto, JJ ;
Gilbert, HF ;
Georgiou, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7784-7792
[7]   DETERMINANTS OF MEMBRANE-PROTEIN TOPOLOGY [J].
BOYD, D ;
MANOIL, C ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (23) :8525-8529
[8]   Chaperone activity of DsbC [J].
Chen, J ;
Song, JL ;
Zhang, S ;
Wang, Y ;
Cui, DF ;
Wang, CC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (28) :19601-19605
[9]   Investigation of the DsbA mechanism through the synthesis and analysis of an irreversible enzyme-ligand complex [J].
Couprie, J ;
Vinci, F ;
Dugave, C ;
Quéméneur, E ;
Moutiez, M .
BIOCHEMISTRY, 2000, 39 (22) :6732-6742
[10]   MUTATIONS THAT ALLOW DISULFIDE BOND FORMATION IN THE CYTOPLASM OF ESCHERICHIA-COLI [J].
DERMAN, AI ;
PRINZ, WA ;
BELIN, D ;
BECKWITH, J .
SCIENCE, 1993, 262 (5140) :1744-1747