Biotic habitat complexity controls species diversity and nutrient effects on net biomass production

被引:84
作者
Eriksson, BK [1 ]
Rubach, A [1 ]
Hillebrand, H [1 ]
机构
[1] Univ Cologne, Inst Bot, D-50931 Cologne, Germany
关键词
Baltic Sea; biodiversity; canopy cover; coastal ecosystems; ecosystem function; eutrophication; Fucus vesiculosus; macroalgae; marine diversity; subtidal ecology;
D O I
10.1890/05-0090
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Canopy-forming plants and algae commonly contribute to spatial variation in habitat complexity for associated organisms and thereby create a biotic patchiness of communities. In this study, we tested for interaction effects between biotic habitat complexity and resource availability on net biomass production and species diversity of understory macroalgae by factorial field manipulations of light, nutrients, and algal canopy cover in a subtidal rocky-shore community. Presence of algal canopy cover and/or artificial shadings limited net biomass production and facilitated species diversity. Artificial shadings reduced light to levels similar to those under canopy cover, and net biomass production was significantly and positively correlated to light availability. Considering the comparable and dependent experimental effects from shadings and canopy cover, the results strongly suggest that canopy cover controlled net biomass production and species diversity by limiting light and thereby limiting resource availability for community production. Canopy cover also controlled experimental nutrient effects by preventing a significant increase in net biomass production from nutrient enrichment recorded in ambient light (no shading). Changes in species diversity were mediated by changes in species dominance patterns and species evenness, where canopy cover and shadings facilitated slow-growing crust-forming species and suppressed spatial dominance by Fucus vesiculosus, which was the main contributor to net production of algal biomass. The demonstrated impacts of biotic habitat complexity on biomass production and local diversity contribute significantly to understanding the importance of functionally important species and biodiversity for ecosystem processes. In particular, this study demonstrates how loss of a dominant species and decreased habitat complexity change the response of the remaining assembly to resource loading. This is of potential significance for marine conservation since resource loading often promotes low habitat complexity and canopy species are among the first groups lost in degraded aquatic systems.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 48 条
  • [1] Airoldi L, 2000, ECOLOGY, V81, P798, DOI 10.1890/0012-9658(2000)081[0798:EODLHA]2.0.CO
  • [2] 2
  • [3] How does eutrophication affect different life stages of Fucus vesiculosus in the Baltic Sea?: a conceptual model
    Berger, R
    Bergström, L
    Granéli, E
    Kautsky, L
    [J]. HYDROBIOLOGIA, 2004, 514 (1-3) : 243 - 248
  • [4] SNAIL GRAZING AND THE ABUNDANCE OF ALGAL CRUSTS ON A SHELTERED NEW-ENGLAND ROCKY BEACH
    BERTNESS, MD
    YUND, PO
    BROWN, AF
    [J]. JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 1983, 71 (02) : 147 - 164
  • [5] Testing the relative contribution of positive and negative interactions in rocky intertidal communities
    Bertness, MD
    Leonard, GH
    Levine, JM
    Schmidt, PR
    Ingraham, AO
    [J]. ECOLOGY, 1999, 80 (08) : 2711 - 2726
  • [6] The response of experimental rocky shore communities to nutrient additions
    Bokn, TL
    Duarte, CM
    Pedersen, MF
    Marba, N
    Moy, FE
    Barrón, C
    Bjerkeng, B
    Borum, J
    Christie, H
    Engelbert, S
    Fotel, FL
    Hoell, EE
    Karez, R
    Kersting, K
    Kraufvelin, P
    Lindblad, C
    Olsen, M
    Sanderud, KA
    Sommer, U
    Sorensen, K
    [J]. ECOSYSTEMS, 2003, 6 (06) : 577 - 594
  • [7] Inclusion of facilitation into ecological theory
    Bruno, JF
    Stachowicz, JJ
    Bertness, MD
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (03) : 119 - 125
  • [8] Bruno JF, 2001, MARINE COMMUNITY ECOLOGY, P201
  • [9] Habitat modification and refuge from sublethal stress drive a marine plant-herbivore association
    Burnaford, JL
    [J]. ECOLOGY, 2004, 85 (10) : 2837 - 2849
  • [10] Effects of shade from multiple kelp canopies on an understory algal assemblage
    Clark, RP
    Edwards, MS
    Foster, MS
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2004, 267 : 107 - 119