Poly-quadratic stability and global chaos synchronization of discrete time hybrid systems

被引:18
作者
Daafouz, J
Millerioux, G
机构
[1] ENSEM, CRAN, F-54516 Vandoeuvre Les Nancy, France
[2] ESSTIN, CRAN, F-54500 Vandoeuvre Les Nancy, France
关键词
global chaos synchronization; poly-quadratic stability; parameter-dependent Lyapunov function; hybrid observers;
D O I
10.1016/S0378-4754(01)00374-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper considers global chaos synchronization as an observer design problem. Chaos generators are ascribed the form of piecewise linear maps, a particular class of discrete time hybrid systems., Sufficient conditions of global synchronization are formulated using a poly-quadratic stability concept. Such a concept is based on the use of parameter-dependent Lyapunov functions to check stability and leads to a reduction of the restricitions relative to conditions involving a unique Lyapunov function. (C) 2002 IMACS. Published by Elsevier Science B.V All rights reserved.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 12 条
[1]   On strict positive real systems design: guaranteed cost and robustness issues [J].
Bernussou, J ;
Geromel, JC ;
de Oliveira, MC .
SYSTEMS & CONTROL LETTERS, 1999, 36 (02) :135-141
[2]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[3]   SYNCHRONIZING CHAOTIC CIRCUITS [J].
CARROLL, TL ;
PECORA, LM .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (04) :453-456
[4]   Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties [J].
Daafouz, J ;
Bernussou, J .
SYSTEMS & CONTROL LETTERS, 2001, 43 (05) :355-359
[5]  
DEOLIVEIRA MC, LMI SOLVER
[6]   Communication systems via chaotic signals from a reconstruction viewpoint [J].
Itoh, M ;
Wu, CW ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (02) :275-286
[7]   Finite-time global chaos synchronization for piecewise linear maps [J].
Millerioux, G ;
Mira, C .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (01) :111-116
[8]   An observer looks at synchronization [J].
Nijmeijer, H ;
Mareels, IMY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :882-890
[9]   DRIVING SYSTEMS WITH CHAOTIC SIGNALS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW A, 1991, 44 (04) :2374-2383
[10]  
VIDYASAGAR M, 1993, NONLINEAR SYSTEMS AN