Magnetic properties of six-coordinated high-spin cobalt(II) complexes:: Theoretical background and its application

被引:585
作者
Lloret, Francesc [1 ]
Julve, Miguel [1 ]
Cano, Joan [1 ,2 ,3 ]
Ruiz-Garcia, Rafael [1 ,2 ,3 ]
Pardo, Emilio [1 ]
机构
[1] Univ Valencia, Inst Ciencia Mol ICMol, Dept Quim Inorgan, Valencia 46980, Spain
[2] Univ Barcelona, Dept Quim Inorgan, IQTC, Inst Nanociencia & Nanotecnol IN2UB, E-08028 Barcelona, Spain
[3] Univ Barcelona, ICREA, E-08028 Barcelona, Spain
关键词
high-spin cobalt(II); exchange coupling; axial distortion; magnetic anisotropy; spin-orbit coupling;
D O I
10.1016/j.ica.2008.03.114
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In this contribution we study and analyse the influence of the different parameters involved in the magnetic susceptibility of six-coordinated high-spin Co(II) complexes. We propose an empirical expression to fit the magnetic susceptibility of polycrystalline samples of mononuclear Co(II) complexes with an axial distortion, the variable parameters being Delta (axial distortion), alpha (orbital reduction factor) and lambda (spin-orbit coupling). This expression avoids solving the 12 x 12 matrix associated to the distortion of the T-4(1g) term. In order to take into account the magnetic coupling (J) in the polynuclear Co(II) complexes, a perturbational approach is proposed to describe their magnetic susceptibility in the whole temperature range (2-300 K) as a function of J, Delta, alpha and lambda. This approach is valid in the limit of the weak magnetic coupling as compared to the spin-orbit coupling, vertical bar J/lambda vertical bar < 0.1. The model allows the treatment of each cobalt(II) ion in axial symmetry as an effective spin S-eff = 1/2. That causes a drastic reduction of the matrix size of the polynuclear compounds from 12(n) x 12(n) to 2(n) x 2(n), n being the number of Co(II) ions in the complex. The main advantage of the model is to make possible the fit of the magnetic susceptibility data of those polynuclear Co(II) complexes whose high nuclearity involved intractable matrices. (c) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:3432 / 3445
页数:14
相关论文
共 74 条
[1]   Mixed-valent cobalt spin clusters:: a hexanuclear complex and a one-dimensional coordination polymer comprised of alternating hepta-and mononuclear fragments [J].
Alley, Kerwyn G. ;
Bircher, Roland ;
Waldmann, Oliver ;
Ochsenbein, Stefan T. ;
Guedel, Hans U. ;
Moubaraki, Boujemaa ;
Murray, Keith S. ;
Fernandez-Alonso, Felix ;
Abrahams, Brendan F. ;
Boskovic, Colette .
INORGANIC CHEMISTRY, 2006, 45 (22) :8950-8957
[2]  
[Anonymous], 2001, J CHEM SOFTW, DOI DOI 10.2477/JCHEMSOFT.7.171
[3]  
[Anonymous], VPMAG REVISION C03
[4]   SPECTRAL-STRUCTURAL CORRELATIONS IN HIGH-SPIN COBALT(II) COMPLEXES [J].
BANCI, L ;
BENCINI, A ;
BENELLI, C ;
GATTESCHI, D ;
ZANCHINI, C .
STRUCTURE AND BONDING, 1982, 52 :37-86
[5]   The chemistry of cobalt acetate .3. The isolation and crystal structure characterisation of the mixed valence octacobalt oligomer, [Co-8(O)(4)(CH3CO2)(6)(OMe)(4)]Cl-4(OHn)(4)center dot 6H(2)O (n=1 or 2), derived from the preparation of cobalt(III) acetate [J].
Beattie, JK ;
Hambley, TW ;
Klepetko, JA ;
Masters, AF ;
Turner, P .
POLYHEDRON, 1997, 16 (12) :2109-2112
[6]  
Bencini A, 2006, DALTON T, P722, DOI 10.1039/b508769d
[7]   ANISOTROPIC EXCHANGE AND DIMERIZATION IN THE ORDERED BIMETALLIC CHAINS CO2(EDTA).6H2O AND COCU(EDTA).6H2O - SINGLE-CRYSTAL EPR INVESTIGATION [J].
BORRASALMENAR, JJ ;
CORONADO, E ;
GATTESCHI, D ;
ZANCHINI, C .
INORGANIC CHEMISTRY, 1992, 31 (02) :294-298
[9]   Synthesis, structural characterisation and preliminary magnetic studies of a tetraicosanuclear cobalt coordination complex [J].
Brechin, EK ;
Harris, SG ;
Harrison, A ;
Parsons, S ;
Whittaker, AG ;
Winpenny, REP .
CHEMICAL COMMUNICATIONS, 1997, (07) :653-654
[10]   New high-spin clusters featuring transition metals [J].
Brechin, EK ;
Graham, A ;
Milne, PEY ;
Murrie, M ;
Parsons, S ;
Winpenny, REP .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1762) :3119-3137