Computing the hypergeometric function

被引:43
作者
Forrey, RC
机构
[1] Harvard-Smithsonian Ctr. Astrophys., Cambridge, MA 02138
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcph.1997.5794
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The hypergeometric function of a real variable is computed for arbitrary real parameters. The transformation theory of the hypergeometric function is used to obtain rapidly convergent power series. The divergences that occur in the individual terms of the transformation for integer parameters are removed using a finite difference technique. (C) 1997 Academic Press.
引用
收藏
页码:79 / 100
页数:22
相关论文
共 9 条
[1]  
BETHE HA, 1977, QUANTUM MECH ONE 2 E, P39
[3]  
Edmonds A. R., 1996, Angular Momentum in Quantum Mechanics
[4]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[5]   COMPUTATION OF BETHE LOGARITHMS AND OTHER MATRIX-ELEMENTS OF ANALYTIC-FUNCTIONS OF OPERATORS [J].
FORREY, RC ;
HILL, RN .
ANNALS OF PHYSICS, 1993, 226 (01) :88-157
[6]  
HILL RH, UNPUB
[7]  
Luke Y. L., 1975, MATH FUNCTIONS THEIR, P3
[8]   BOUNDS FOR THE APPELL FUNCTION F2 [J].
MOSES, HE ;
PROSSER, RT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (02) :390-410
[9]  
PRESS WH, 1992, NUMERICAL RECIPES FO, pCH5