Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria

被引:157
作者
Ferrari, BC [1 ]
Binnerup, SJ
Gillings, M
机构
[1] Macquarie Univ, Div Environm & Life Sci, Dept Biol Sci, Sydney, NSW 2109, Australia
[2] Natl Environm Res Inst, Dept Environm Chem & Microbiol, Roskilde, Denmark
关键词
D O I
10.1128/AEM.71.12.8714-8720.2005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Traditional microbiological methods of cultivation recover less than 1% of the total bacterial species, and the culturable portion of bacteria is not representative of the total phylogenetic diversity. Classical cultivation strategies are now known to supply excessive nutrients to a system and therefore select for fast-growing bacteria that are capable of colony or biofilm formation. New approaches to the cultivation of bacteria which rely on growth in dilute nutrient media or simulated environments are beginning to address this problem of selection. Here we describe a novel microcultivation method for soil bacteria that mimics natural conditions. Our soil slurry membrane system combines a polycarbonate membrane as a growth support and soil extract as the substrate. The result is abundant growth of uncharacterized bacteria as microcolonies. By combining microcultivation with fluorescent in situ hybridization, previously "unculturable" organisms belonging to cultivated and noncultivated divisions, including candidate division TM7, can be identified by fluorescence microscopy. Successful growth of soil bacteria as microcolonies confirmed that the missing culturable majority may have a growth strategy that is not observed when traditional cultivation indicators are used.
引用
收藏
页码:8714 / 8720
页数:7
相关论文
共 32 条
[1]   FLUORESCENT-OLIGONUCLEOTIDE PROBING OF WHOLE CELLS FOR DETERMINATIVE, PHYLOGENETIC, AND ENVIRONMENTAL-STUDIES IN MICROBIOLOGY [J].
AMANN, RI ;
KRUMHOLZ, L ;
STAHL, DA .
JOURNAL OF BACTERIOLOGY, 1990, 172 (02) :762-770
[2]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[3]  
Binnerup SJ, 2001, FEMS MICROBIOL ECOL, V37, P231, DOI 10.1111/j.1574-6941.2001.tb00870.x
[4]   BACTERIAL COMMUNITY STRUCTURES OF PHOSPHATE-REMOVING AND NON-PHOSPHATE-REMOVING ACTIVATED SLUDGES FROM SEQUENCING BATCH REACTORS [J].
BOND, PL ;
HUGENHOLTZ, P ;
KELLER, J ;
BLACKALL, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) :1910-1916
[5]   Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation [J].
Borneman, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2647-2653
[6]   VIABILITY AND ISOLATION OF MARINE-BACTERIA BY DILUTION CULTURE - THEORY, PROCEDURES, AND INITIAL RESULTS [J].
BUTTON, DK ;
SCHUT, F ;
QUANG, P ;
MARTIN, R ;
ROBERTSON, BR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1993, 59 (03) :881-891
[7]   High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates [J].
Connon, SA ;
Giovannoni, SJ .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (08) :3878-3885
[8]  
FERRARI B, IN PRESS APPL ENV MI
[9]   Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community [J].
Ginige, MP ;
Hugenholtz, P ;
Daims, H ;
Wagner, M ;
Keller, J ;
Blackall, LL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (01) :588-596
[10]   Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils [J].
Holmes, AJ ;
Bowyer, J ;
Holley, MP ;
O'Donoghue, M ;
Montgomery, M ;
Gillings, MR .
FEMS MICROBIOLOGY ECOLOGY, 2000, 33 (02) :111-120