Bifurcation and chaos in the duffing oscillator with a PID controller

被引:26
作者
Cui, FS [1 ]
Chew, CH [1 ]
Xu, JX [1 ]
Cai, YL [1 ]
机构
[1] XIAN JIAOTONG UNIV,INST ENGN MECH,XIAN 710049,PEOPLES R CHINA
关键词
bifurcation; chaos; Duffing oscillator; fractal basin boundary; PID controller;
D O I
10.1023/A:1008204332684
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We discuss in this paper the bifurcation, stability and chaos of the non-linear Duffing oscillator with a PID controller. Hopf bifurcation can occur and we show that there is a global stable fixed point. The PID controller works well in some fields of the parameter space, but in other fields of the parameter space, or if the reference input is not equal to zero, chaos is common for hard spring type system and so is fractal basin boundary for soft spring system. The Melnikov method is used to obtain the criterion of fractal basin boundary.
引用
收藏
页码:251 / 262
页数:12
相关论文
共 20 条
[1]  
CARR J, 1981, APPL MANIFOLD THEORY
[2]   STABILITY, BIFURCATION AND CHAOS OF NONLINEAR STRUCTURES WITH CONTROL .2. NONAUTONOMOUS CASE [J].
CHENG, AHD ;
YANG, CY ;
HACKL, K ;
CHAJES, MJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1993, 28 (05) :549-565
[3]  
Cook P. A., 1986, Proceedings of the 25th IEEE Conference on Decision and Control (Cat. No.86CH2344-0), P1151
[4]   SIMPLE FEEDBACK-SYSTEMS WITH CHAOTIC BEHAVIOR [J].
COOK, PA .
SYSTEMS & CONTROL LETTERS, 1985, 6 (04) :223-227
[5]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[6]   CONTROL OF CHAOS IN UNIDIMENSIONAL MAPS [J].
GUEMEZ, J ;
MATIAS, MA .
PHYSICS LETTERS A, 1993, 181 (01) :29-32
[7]  
Holmes P., 1983, Proceedings of the 22nd IEEE Conference on Decision and Control, P365
[8]  
Huang, 1992, THEORY STABILITY
[9]  
KAPITANIAK T, 1992, CHAOS SOLITON FRACT, V2, P519
[10]   SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS [J].
LIMA, R ;
PETTINI, M .
PHYSICAL REVIEW A, 1990, 41 (02) :726-733