Seasonal evolution of subtropical anticyclones in the climate system model FGOALS-s2

被引:10
作者
Liu Yimin [1 ]
Hu Jun [1 ]
He Bian [1 ,2 ]
Bao Qing [1 ]
Duan Anmin [1 ]
Wu Guoxiong [1 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
subtropical anticyclone simulation; seasonal evolution; components of diabatic heating; climate system model FGOALS-s2; GENERAL-CIRCULATION; TIBETAN PLATEAU; ASIA; REANALYSIS; MONSOON;
D O I
10.1007/s00376-012-2154-0
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The simulation characteristics of the seasonal evolution of subtropical anticyclones in the Northern Hemisphere are documented for the Flexible Global Ocean-Atmosphere-Land Systemmodel, Spectral Version 2 (FGOALS-s2), developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, the Institute of Atmospheric Physics. An understanding of the seasonal evolution of the subtropical anticyclones is also addressed. Compared with the global analysis established by the European Centre for Medium-Range Forecasts, the ERA-40 global reanalysis data, the general features of subtropical anticyclones and their evolution are simulated well in both winter and summer, while in spring a pronounced bias in the generation of the South Asia Anticyclone(SAA) exists. Its main deviation in geopotential height from the reanalysis is consistent with the bias of temperature in the troposphere. It is found that condensation heating (CO) plays a dominant role in the seasonal development of the SAA and the subtropical anticyclone over the western Pacific (SAWP) in the middle troposphere. The CO biases in the model account for the biases in the establishment of the SAA in spring and the weaker strength of the SAA and the SAWP from spring to summer. CO is persistently overestimated in the central-east tropical Pacific from winter to summer, while it is underestimated over the area from the South China Sea to the western Pacific from spring to summer. Such biases generate an illusive anticyclonic gyre in the upper troposphere above the middle Pacific and delay the generation of the SAA over South Asia in April. In midsummer, the simulated SAA is located farther north than in the ERA-40 data owing to excessively strong surface sensible heating (SE) to the north of the Tibetan Plateau. Whereas, the two surface subtropical anticyclones in the eastern oceans during spring to summer are controlled mainly by the surface SE over the two continents in the Northern Hemisphere, which are simulated reasonably well, albeit with their centers shifted westwards owing to the weaker longwave radiation cooling in the simulation associated with much weaker local stratiform cloud. Further improvements in the related parameterization of physical processes are therefore identified.
引用
收藏
页码:593 / 606
页数:14
相关论文
共 36 条
[1]  
[Anonymous], 1987, ATMOSPHERIC OCEANIC
[2]   The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2 [J].
Bao Qing ;
Lin Pengfei ;
Zhou Tianjun ;
Liu Yimin ;
Yu Yongqiang ;
Wu Guoxiong ;
He Bian ;
He Jie ;
Li Lijuan ;
Li Jiandong ;
Li Yangchun ;
Liu Hailong ;
Qiao Fangli ;
Song Zhenya ;
Wang Bin ;
Wang Jun ;
Wang Pengfei ;
Wang Xiaocong ;
Wang Zaizhi ;
Wu Bo ;
Wu Tongwen ;
Xu Yongfu ;
Yu Haiyang ;
Zhao Wei ;
Zheng Weipeng ;
Zhou Linjiong .
ADVANCES IN ATMOSPHERIC SCIENCES, 2013, 30 (03) :561-576
[3]  
Charney J.G., 1981, Monsoon Dynamics, P99, DOI [DOI 10.1017/CBO9780511897580.009, 10.1017/cbo9780511897580.009]
[4]  
Charney JG., 1949, TELLUS, V1, P38, DOI [10.3402/tellusa.v1i2.8500, DOI 10.3402/TELLUSA.V1I2.8500]
[5]   The Community Climate System Model version 3 (CCSM3) [J].
Collins, William D. ;
Bitz, Cecilia M. ;
Blackmon, Maurice L. ;
Bonan, Gordon B. ;
Bretherton, Christopher S. ;
Carton, James A. ;
Chang, Ping ;
Doney, Scott C. ;
Hack, James J. ;
Henderson, Thomas B. ;
Kiehl, Jeffrey T. ;
Large, William G. ;
McKenna, Daniel S. ;
Santer, Benjamin D. ;
Smith, Richard D. .
JOURNAL OF CLIMATE, 2006, 19 (11) :2122-2143
[6]   Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model [J].
Duan Anmin ;
Wu Guoxiong ;
Liang Xiaoyun .
ADVANCES IN ATMOSPHERIC SCIENCES, 2008, 25 (04) :518-528
[7]  
GILL AE, 1980, Q J ROY METEOR SOC, V106, P447, DOI 10.1002/qj.49710644905
[8]   TOWARDS A PV-THETA VIEW OF THE GENERAL-CIRCULATION [J].
HOSKINS, BJ .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1991, 43 (04) :27-35
[9]  
Li J., 2001, CLIMATOLOGICAL MEAN, P279
[10]  
Liu Boqi, 2009, Chinese Journal of Atmospheric Sciences, V33, P1319